|
|
|
宗荣:
很有意思,弄清了电容和电感的本质,就能用牛顿力学中机械的简谐振动来理解LC电路中的电磁振荡,这样又把牛顿力学中部分内容同电磁学中部分内容统一起来了。 葛兴: 我们把LC电磁振荡类比于弹簧——定轴刚体系统的谐振运动,这种类比具有一定局限性。这是因为一方面量子以太涡旋的转动是很复杂的,它不能简单地认为和转动的刚体一样。另一方面电容器与电感的连接实际上也不是象弹簧与定轴刚体那样直接固定在一起,而是通过电流而耦合的。同时,量子以太涡旋的转动仅是一个原理性的提法,对其具体的描述还很不完备。 尽管我们提出的量子以太涡旋振荡的力学微分方程,只是只用弹簧——定轴刚体系统的类比,这种以位移或角位移为变量的方程是初步的,但其意义是不可估量的。从我们提出的大量实事中,磁是量子以太的涡旋这样一个观点,就说明了大量以前无法弄清的问题,最终把电磁学和牛顿力学极为简单地统一起来。同时,磁是量子以太的涡旋的模型比麦克斯韦的分子涡旋模型要简单得多。 由弹性力学可知,振动可以在媒质中传播。在只能产生压缩形变的媒质(气体或液体)中,只能传播纵波;在既能产生压缩形变又能产生剪切形变的媒质(固体)中,则能传播纵波和横波。 以太也是一种媒质,在其中能够产生什么样的变形、能传播什么样的波呢? 由弹性力学可知,纵波是一种无旋波,传播纵波的物质分子仅仅作往复直线运动——平动。而空间中的以太只能作涡旋运动而不能作丝毫的平动,没有任何的以太风。也就是说,以太不能作往复直线运动,因此空间的以太也就不会产生以太纵波了。事实也证明,在电磁以太中产生电磁波的同时却丝毫没有发现“以太”纵波。也就是说,电磁波是一种无散波。 因为磁是量子以太的涡旋,这种量子以太涡旋也会在电磁以太中以光速的几百分之一的速度传播。但这些量子以太的涡旋是分立的,一个个的,它们不是连续的。 LC 电磁振荡电路中导线和线圈会产生交变电流,交变电流会产生交变磁场,也就是方向和密度都在不断变化的量子以太涡旋,它们也已光速的几百分之一的速度向外传播。这就是电磁波。因此,电磁波是一种涡旋波。从某种意上说这种由交变电流产生的电磁波是一种密度波。 由于涡旋的振动方向和涡旋的传播方向是垂直的,涡旋波是横波。电磁波当然也就是一种横波了。 |
|
对【182楼】说: 今天上午,我看了叶波老先生在华人频道的访谈。 我认为,华人频道的节目有专业水平,叶波老先生的钱花得值得。 我也是以太的坚定支持者。在我今年出版的科普书中再次强调了这一点。 可是,要正确地给出新以太模型,非常困难,这是一个物理学前沿。 叶老先生的以太模型代表了这样一种努力,虽然我并不认同。 希望叶老先生量力而行,保持革命的本钱。 |
|
宗荣:
当代电磁波理论认为,变化的电场在其周围空间激发出变化的磁场,变化的磁场又在其周围空间激发出涡旋电场,电磁波就是这样产生和传播的。“变化的磁场在其周围的空间激发出涡旋电场”的说法是牵强附会和令人难以理解的。 葛兴: 因为电场是有源场,只有电荷存在,才能产生电场。在没有电荷的“真空”里能由变化的磁场产生出涡旋电场来,这是不可能的。同时,电磁波也不象弹性波那样仅由一个变量——位移u来描述,而是由两个变量E、H如影随形、胡搅蛮缠地共同描述。远远没有我们上面用一个变量φ的描述简单、自然、明确与容易理解。其实,E只不过是交变量子以太的涡旋源,一旦交变量子以太的涡旋产生以后,这种交变的涡旋就会自动地在空间中以波动方式以一定速度传播,根本不需要“变化的磁场在其周围的空间激发出涡旋电场”这一假设。因此,电场强度E不过是电磁波中的一块赘肉,去掉了这块赘肉,电磁波就变得极为简单和直观。因此,电磁波是一种纯粹的磁波。 葛兴: 尽管电磁波也是一种横波,但是它与固体中产生的横波有些不同,固体中产生的横波是由固体分子产生的位移在固体中的传播而引起,而电磁波则是量子以太涡旋在空间中的传播而引起。量子以太涡旋有些类似于一种扭转振动,一种角速度大小各方向在不断地变化的扭转。虽然以太是无散的,但它完全可以作这种涡旋运动。因此,电磁波和固体中的横波是有些类似的,量子以太涡旋的扭摆对应于固体媒质分子的往复位移,以太对应于固体媒质,电磁波就对应于固体中的横波了。 我们知道,原子是由原子核和绕核电子组成的,电子在绕核运转时,会产生一个个量子以太的涡旋。但这些量子以太涡旋也会被运转的电子本身挡住,进一步的分析证明,这种阻挡作用在某个特定的位置会造成量子以太涡旋的大小和方向都在不断地变化,在这种情况下,电子也就会产生和辐射电磁波了。这些分析将在光的物理模型中详细论述。 在我们周围空间中存在着各种方向和各种频率的电磁波,如果空间电磁波的相位完全和电子产生的电磁波的相位一致,它们之间就会发生共振而产生能量的交换,能量大的一方会向能量小的一方转移。由于空间中任何一种频率的电磁波的强度不会为零,当电子产生的电磁波和空间存在的电磁波的共振处于平衡时,它们之间就没有能量的交换,从而电子也就不会掉到原子核上了。 如果空间电磁波的能量大于电子产生的电磁波的能量,例如一束单色光照在原子上,电子就会因共振获得能量而离核越来越远,甚至脱离原子核,这就是光电效应。显然,由此产生的光电子的速度只与光的频率有关,而与光的强度无关。光的强度只能增加光电子的数量,这与光电效应的结论是相吻合的。因此,用光的波动说同样可以解释光电效应,而且解释得更加合情合理。 由此可见,物质的分子可以用共振的方式与周围空间中的电磁波交换能量,特别是交换热量。同时,物质的分子在高温下,其分子和电子的各种运动更加剧烈,能产生能量很大的电磁波,它们能发光和发热也就是很正常的了。 由于量子以太涡旋是一个个的,它是不连续的。而机械波是连续的,所以电磁波和机械波也有本质的区别。电子只有在某些轨道上运转才是稳定的,不是在任一轨道上运转都是稳定的。电子运转时所产生的电磁辐射也只是某些固定的频率,而不是连续的。光和热的本质也是电磁波,这也就是光和热具有量子特性的根本原因。 总而言之,电磁波是一种无散波、涡旋波、横波、纯粹的磁波,对于交变电流产生的电磁波也是一种密度波。它不是粒子,但是具有量子性。 |
|
黄宝:
就算磁是量子以太涡旋有道理,但是以太是相对太阳静止,地球在以太中运动。以太对地球的运动总有一点阻力吧?地球绕太阳运动的速度就会逐渐减少,久而久之地球就会逐渐掉到太阳之中。但地球已经运行了几十亿年,这说明地球没有受到阻力,以太的存在性也就有问题了。 葛兴: 以太是比分子、原子和电子小得多的下一个物质层次的微观粒子。至于它的半径有多大,目前人们还无法测出。一般而言,物质每到一个新的层次,就会出现一些新的性质。以太也是这样,它也有自己的一些特殊性质。 黄宝: 什么特殊性质? 葛兴: 以太是一种超流体。 黄宝:超流体?什么是超流体? 葛兴: 以太不仅是电磁波的介质,而且磁和光也是由以太组成的。不仅如此,它还具有一系列的性质。比如说以太是一种超流体。 1908年7月9日,卡末林——昂内斯实现氦的液化后,对物质在低温下的物理性质的研究逐步深入,人们相继发现了低温下的超导电性和超流现象。 30年代,实验发现,当液氦(指4He)的温度降到2.17K时,液氦从原来的正常流体突然转变为具有一系列极不寻常的性质的“超流体”,这就是超流现象。在2.17K以下,超流的液氦具有以下性质: 首先,液氦能沿极细的毛细管(管径约0.1微米)流体而几乎不呈现任何粘滞性。这一现象最先由卡皮查于1937年观察到,称为超流性。 其次,如果用一细丝悬挂一薄盘浸于液氦中,让圆盘作扭转振动,则盘的运动将受到阻尼。 当液氦由容器A中通过多孔塞(或极细的毛细管)流出时,A内的液氦的温度升高。这一现象好应是机械致热效应。其逆过程称为热机械效应,即:当升高A内的温度时,其中液氦的液面将上升,若A本身是一毛细管,则将观察到液氦从上口喷出,故也称喷泉效应。 另外,液氦还具有极好的导热性,热导率为室温下铜的800倍。 以上表明,超流体没有粘滞和摩擦阻力,这是超流体一个重要的性质。 在极低温条件下,发现某些液体具有一种奇特的超流动性现象。所谓超流动性,是指在极低温条件下,某些液体具有反常的极低粘滞性,可以完全无阻尼地流经极细的管道或狭缝,而不损耗其动能的现象。 当冷冻温度下降至2.2K时,液氦- 4中会突然出现一种十分奇怪的现象:一部分液体变得完全没有粘稠性,也失去了任何摩擦作用,这就是所谓的超流。 当液氦- 4在温度为2.2K以上时,液氦- 4与容器壁有摩擦力,当温度下降至2.2K时,部分液体变成了超流体而失去了任何摩擦作用,这是一个非常神奇有趣的性质。当液态He-4续降温时,在2.2K将发生一个相变,从He-I相突变成He-II相,这个He-II相就具有超流性。一旦液体进入超流相,其流动阻力突然降为零,而且可以从极细的管中快速穿过。 1938年,英国《自然》杂志同时发表了两篇文章,其中一篇是卡皮查在莫斯科写的,另一篇是艾伦和米森纳在剑桥写的。这两篇文章都描述了液氦的粘滞性测量实验。他们所用的方法与前人不同:让液氦通过很细的毛细管或两块平板之间的窄缝,测量它的摩擦力。所得到的结果是相同的:液体氦在流过毛细管或两块平板之间的窄缝时,几乎没有粘滞性。更令人惊奇的是,毛细管管径越细或平板间窄缝越小,液体氦通过得越快,即阻力越小。卡皮查给这个新现象起了个名字叫“超流动性”。超流的意思是指流体的内摩擦力(粘性)在低于λ点(比热最高点)温度时,趋于消失。 超流体中产生的漩涡可永久地保持,这是超流体的另一个重要性质。 |
|
叶波老师:我由于特殊原因已经4个月没有上网。我非常佩服你的人品,人格,才华。你的学术研究非常有价值。待后人去评价吧!但愿你,身体健康!在我有生之年,我想会会你。
吴东敏2012,12,28 |
| 叶先生:玻璃和木头中有以太吗?是软的还是硬的?为什么光能透过玻璃却穿不过木头?折射律不同是不是有不同类别的以太? |
|
张先生:谢谢你的关注。以太只有一种,见光会自动变硬。透射与物质结构有关。
同样的道理,以太也能逐渐带走太阳的角动量。也就是说,太阳在自转的时候,会产生很强的磁场,磁是以太的量子涡旋,这些涡旋向太阳以外不断传播就十分缓慢地带走了太阳的角动量,太阳角动量就因而慢慢减少。根据理论上的计算和实际测量,在几十亿年的时间里太阳的自转周期由最初的大约1/2天减慢到现在的约26天。太阳角动量困难问题就这么简单地解决了。 宗荣: 嘿!真有你的!解决太阳角动量困难就这么简单! 葛兴: 电荷间的作用力是以太与正电子或负电子相互作用而引起的一种表面现象。我们知道,液体与固体之间存在“润湿”与“不润湿”的作用,例如水和玻璃是“润湿”的,水和蜡则是“不润湿”的。类似地以太和正电子是“润湿”的,而和电子则是“不润湿”的。 在正电子的周围会产生这样一种现象:靠近它周围的以太的密度会比较大。或者说在正电子周围吸附有较密集的以太。同样地,靠近电子周围的以太的密度比较小。或者说,靠近电子周围排斥以太作用使其周围的以太比较稀疏。以太总体上则尽量保持各处自由以太密度的均匀一致,所以同种电荷会排斥得远远的,异种电荷又会相互吸引在一起。 正电子周围吸附有较密集的以太和负电子周围的排斥而有较稀疏的以太,这说明以太能和正负电子发生表面作用。特别地电荷的运动能产生磁场,交变的电流能产生电磁波,电子绕原子核运转在一定的条件下会发光。没有以太,就无法进一步弄清磁、光和电磁波的本质。 宗荣: 与你讨论,能学到不少新东西。还能说明哪些天文现象呢? 葛兴: 用以太的观点能对3k微波背景辐射进行新的解释。 众所周知,固、液、气态物质都具有一定的温度,如果以太也是一种物质,那么以太涡旋有不有温度呢?我们又如何求得它的温度呢?任何固体、液体或气体,在任何温度下都会发射电磁波。向四周所辐射的能量称为辐射能。这种辐射在量值方面和按波长分布方面都取决于辐射体的温度,所以叫做热辐射。如果把作热辐射的物体看成黑体,便可根据热辐射中的维恩位移定律求出其温度。1893年维恩根据热力学原理得出,任何温度下黑体辐射本领都有一个极大值,这极大值对应的波长λ与绝对温度T成反比。即 λT=b 只要能求得λ,因为b为一常数,便可求出T。这种测温法称为色温法,用此法测得的温度称为色温度。 如果以太存在,空间中的以太的涡旋也应该有一定的温度,因为热辐射的本质就是以太量子涡旋的共振和传播。它能和固、液、气体一样能向四周发射电磁波或热辐射。显而易见,如果以太涡旋存在,我们应能探测到周围空间存在一种各向同性的电磁波或热辐射。 1964年,美国贝尔电话实验室的两位工程师彭齐亚斯和威耳逊为了改进卫星通讯,建立了高灵敏度的接收天线系统。他们安装了一架卫星通讯用的喇叭形天线。这架天线有很强的方向性,即喇叭口对向天空中某方向时,地面及空中其它方向电磁波干扰都很微小。为了检验这台天线的低噪声性能,他们避开噪声源而将天线指向天空进行测量,在波长7.35厘米处所作的测量已经表明,无论天线指向什么天区,总会接收到一定的微波噪声。这种噪声相当显著,并且与方向无关。他们日复一日,月复一月地进行测量,结果都是一样。它既没有周日变化,也没有季节变化。与地球的自转和公转运动也没有明显关系。这种噪声应当是来自空间的一种辐射。这种辐射相当于绝对温度在2.5-4.5K之间的黑体辐射,通常称之为3K宇宙微波背景辐射。由于天顶方向和地平方向的大气厚度明显不同,彭齐亚斯和威尔逊测得的这种辐射与方向无关,排除了地球大气层起源的可能性。由于银河系物质分布不均匀,因而也排除了银河系起源的可能性。微波背景辐射只可能来自广阔的宇宙。更精确地说,微波背景辐射是高度各向同性的温度约为2.7K的黑体辐射,这是一种充满宇宙各处的均匀辐射。 从那以后,已经有许多人对微波背景辐射作了详细的研究,在相当宽的波长范围内得到了支持黑体辐射谱的结果。也证明了高度地各向同性。1989年11月宇宙背景探索卫星(COBE)升空,获得了丰富的数据,证明实测的微波背景辐射谱非常精确地符合温度为2.726±0.010K的黑体辐射谱,观测数据与黑体辐射理论曲线的符合情况极好,卫星同时证明,这种辐射具有高度各向同性。 1965年初,彭齐斯和威尔逊与狄克小组进行了互访,最后共同确认这个相当于3K的宇宙背景辐射就是“原始火球”的残余辐射。这是对大爆炸理论的强有力支持,从此,大爆炸理论又获得了新生。这一发现被狄克、皮伯斯、劳尔和威金森等人作为宇宙大爆炸理论的证据。也就是说,宇宙大爆炸后约200亿年的今天,在宇宙间还残留着3K左右的辐射。 其实,这一发现用来作为以太存在的证据更为合理。因为空间中本来存在着以太的量子涡旋,它本身就是一种热辐射,它存在于空间中很容易理解。 |
|
第一、以太充满了我们能探索到的任何空间,在时间上它的存在既没有起点,也不会有终点,所以,以太的存在是极大时空范围内的事件,以太具有各种各样涡旋,物质中也有各式各样的以太的涡旋,它们之间长期地传播和共振,相互之间不间断地通过共振而进行能量的交换和传播,最终形成黑体谱。
第二、微波背景辐射的另一特征是具有极高的各向同性。各向同性说明,在各个不同方向上,各个相距非常遥远的天区之间,应当存在过相互联系。 以太充满了人们所能探测到的空间,从宏观上看,天体的分布是均匀的。各个相距非常遥远的天区之间的以太涡旋,通过长期的传播和共振而进行着能量交换,达到极高的各向同性,这也是理所当然的事。 第三,因为以太是极大空间范围内的事件,它是客观世界的本底或背景,同时,以太涡旋的传播和共振又正好是一种辐射。可见以太的这种传播和共振完全可以称为背景辐射,只不过这种背景辐射恰好落在微波波段上,所以就称为微波背景辐射了。 第四,目前已由测得的曲线求得这种热辐射对应的色温为2.7K。如果把以太涡旋作为绝对黑体,则以太涡旋的温度就是2.7K。以太既然是一种物质,以太涡旋具有一定的温度也是理所当然的。说它的温度为2.7K,也是非常合理的。 于是,我们认为这种宇宙背景微波辐射就是分布在空间中的以太涡旋,它的温度为2.7K。这就为以太的存在提供了又一个有力的证据。 黄宝: 就算地球不能拖曳以太,光行差也说明以太对于太阳相对静止,它们之间原先的矛盾不存在了。但斐索试验是证明了流水部分地拖曳以太,对此又如何解释? |
|
宗荣:
从十七世纪初开始,直至二十一世纪的今天,前后有众多伟大的科学家参与其间。一大批杰出的物理学家如牛顿、拉普拉斯、毕奥、胡克、惠更斯、菲涅耳、托马斯•杨、马吕斯、阿拉果、傅科、斐索、柯西、基尔霍夫、汤姆逊、泊松、麦卡拉、韦伯、麦克斯韦、赫兹、普朗克、爱因斯坦、玻尔、德布罗意、康普顿、密立根、薛定谔、狄拉克、海森伯、泡利、约旦、费米、古普塔等都曾为此问题付出了努力或作出了贡献,但都未能最终解决它。他们千方百计地企图揭开遮盖在光的本质外面那层扑朔迷离的面纱,双方对这一问题的争论极大地丰富了人类对光的认识。其中恩恩怨怨,谁又能说得明白?局面一直处在一种进退维谷的境地中,一方面双缝实验和麦氏理论毫不含糊地揭示出光的波动性,另一方面光电效应和康普顿效应又同样清晰地表明光是粒子。就粒子来说,玻尔的跃迁、原子里的光谱、海森堡的矩阵都强调了光不连续的一面,似乎粒子占了上风,但薛定谔的方程却又大肆渲染光的连续性,甚至把波动的标签都贴到了光的脸上。 在十七世纪末期,牛顿提出了光的微粒说。据他看来,光是由一种具有完全弹性的球形微粒大量地聚集成的,这些微粒以高速度作直线运动,并且只有在媒质发生变更时才会有速度的变化;速度的变化则用媒质对微粒的作用力来解释。牛顿从这种论据出发说明了光的直进现象、反射定律和折射定律。微粒说认为:光在媒质中折射时,折射线靠拢法线,这是和实验符合的。但同时又认为:媒质中的光速应当大于真空中的光速。1850年,傅科用高速旋转镜法,测定光在水中的速度约是空气中速度的3/4,证明了光在媒质中的速度大于真空中的速度的观点是错误的。 和牛顿同时代的惠更斯第一个提出了光的弹性波动说。他认为光是在一种特殊的弹性物质——“光以太”中进行着的弹性机械波动。按照他的看法,光波按球面形式传播,如果光遇着障碍物上的开孔,则在孔内的光以太微粒也发生振动并向障碍物后面发出球面波。根据他的波动说,能够说明光在相同媒质或不同媒质中的传播方向问题,以及与此相关的反射和折射定律。1802年托马斯•杨完成了光的双缝干涉实验,并且提出了“光干涉原理”。这种原理是在假设光波具有一定波长的基础上来阐述的。他后来又提出光是横波的假设,对波动学说作了进一步的补充。1815年前后,菲涅耳提出惠更斯——菲涅耳原理。总结了他自己和同时代学者关于干涉、衍射的多种实验,对波动学说作了更重要的补充。这样就能定量地处理光干涉、衍射和透明媒质的色散现象等问题。 弹性波动学说在以太问题上的矛盾,首先被1871年麦克斯韦的电磁说部分地解决了。他的学说起源于总结电磁学得到的一组方程,并预言了电磁波的存在。这一预言在1888年由赫芝的实验所证实。电磁学说认为光也是一种电磁波。空间存在着 “电磁以太”,它本身是不动的,但它的状态则能够作周期性变化,并且以一定的速度传播。这学说和它的各项推论在当时是和各种光学实验的结果相符合的,在光的认识上人们又向前跨进了一大步。 在1881年,迈克尔逊为了探测以太风的存在,设计了一个著名的以太漂移的试验。如果以太风存在,将仪器的两干涉臂同时转动90度,应有0.4个干涉条纹的移动,试验结果却没有任何条纹移动。这就等于否定了“以太风”,从而也认为以太是不存在的。最后,人们认为光本身是一种特殊的物质,并没有必要去建立一种实际上不存在的“以太”概念来解释光的性质。 普朗克能量子、光电效应和康普顿实验又证明了光的微粒性,认为光的辐射和吸收是以量子作为单位的,这是旧的量子论的基本论点。最后量子论又发展为光的两重性理论,认定光是兼有着波动性和微粒性的特殊物质。 宗荣: 为了解释光的本性问题,人们先后提出了光的粒子说、波动说和波粒两象性学说。光的这几种学说远非完善,仍然存在很多问题。 |
|
葛兴:
为了清楚起见,把光的各种学说中主要问题列举如下。 粒子说存在的问题 1、黑布问题 如果光是粒子的话,那么光为什么不能通过既漏水又漏气的薄薄黑布,却能通过不漏水不漏气的厚厚玻璃呢? 2、质量和速度问题 如果光是粒子的话,粒子又是有质量的。黑体在连续不断地接受光粒子时,它的质量就会增加。结果是:无论多久没人能测出黑体质量的增加。为什么?有粒子的吸收,测不出质量的增加?光子的静止质量为什么是0?光子的速度为什么仅仅只有光速一种? 3、寿命问题 量子论告诉我们,光的行径犹如一颗颗的微粒,每一粒子带着一定的能量,并且用光的速度在飞行着,这些微粒碰到了其它物体,便会产生能量或动量的变化。这就是光的微粒的图象。我们知道,在空气中飞行的子弹速度会越来越慢,那么,在宇宙中飞行几百亿年的光子速度为什么丝毫不变?光子有不有一定的寿命? 4、碰撞问题 两束光反向相遇,两束反向运动的光子之间一点也不会发生碰撞,好象对方不存在一样。 5、加速问题 当光从一种媒质进入另一种媒质时,速度会突变,为什么光子的速度在同一种媒质里保持不变,而在两种媒质的界面上发生突变呢?光子从光密媒介进入光疏媒介时,光子的运动会加速。光子从光疏媒介进入光密媒介时,光子的运动又会减速。由牛顿力学可知,此时光子一定会到力的作用,那么,在两种媒质的介面上,是谁对光子施力呢? 6、纵波问题 我们知道,气体和液体等流体内只能传播纵波。根据粒子说光波应是纵波,因为光子的运动方向与其传播方向一致。光子可以看成一种流体,因此,光子不可能产生和传播横波。但光是的确是一种横波, 丝毫没有一点纵波的成分。为什么是这样的呢? 7、偏振片问题 取两个相同的偏振片,光是能够通过其中一个的。但是将两个偏振片重迭起来,并转动其中一个偏振片,就会有一个位置,光完全不能通过两个重迭的偏振片。光子能够通过其中一个,为什么不能通过重迭的两个? 8、光量子存在问题 能量子和光量子是真实存在的吗?它的物理结构是怎样的? 9、波长问题 干涉、衍射这是波动才特有的现象。光的粒子说能在粒子的什么地方能加上一个频率或波长的物理特性? 10、单光子干涉实验问题 1909年泰勒曾做了一个很奇特的实验。他先在强光下拍摄了一根细针的衍射像,然后减弱光束的强度,延长曝光时间,有一次达三个月之久。当他把光束衰减到只有一个光子进入仪器时,所得到的衍射像与强光短时拍摄的完全相同。泰勒的实验表明,干涉与衍射,并不象人们通常认为的那样,是多个光子同时存在并相互作用而产生的。相反,单个的光子也能产生干涉与衍射。此后,他又作了单光子的双缝干涉试验,结果相同。单光子干涉试验给光的粒子说提出了这样一个致命的问题:设想当弱光束在双缝上实现单光子干涉时,一个光子怎么能“部分”地穿过一个缝,同时又“部分”地穿过另一个缝,然后自己的一部分和自己的另一部分发生干涉呢? 11、独立光束干涉试验问题 激光出现以后,曼德尔等人进行了独立光束干涉试验。他们用两只脉冲式红宝石激光器作为两个独立的光源。为了保证条纹的可见度,采用了光电符合技术以消除各种频率漂移使信号产生的干扰。结果获得了条纹可见度为15%的干涉图样。经过改进,完成了高度减弱的两束独立激光之间的干涉。这一试验中,高度减弱的两束独立激光每一束中一次只能有一个光子入射。也就是说,当一束激光发出一个光子时,另一束激光发光子的几率仅有万分之一。独立光束干涉试验给光的粒子说带来一个致命的问题。因为独立光束的 “单光子干涉”发生的是双光干涉,当第一个激光器发出的光束中仅有一个光子奔向控制器时,第二个激光器还未发出光子,第一个光子就已经与第二个尚未到来的光子发生了干涉效应。然而,当把一束激光关掉时,这种干涉就消失了。这就说明光子能预见与它干涉的光子即将到来,提前发生了作用,或者说光子能与 “虚无”发生作用。这是光的粒子说中令人无法接受的致命问题。 12、光电效应问题 1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射。1968年Teich 和Wolga用GaAs激光器发射的hn=1.48eV的光子照射逸出功为2.3eV的钠时,发现光电流与光强的平方成正比。按爱因斯坦方程,光子的频率处于钠的红限频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比。于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射。后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射。人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比。光电效应的粒子的解释就有如下困难:为什么某些激光不遵循爱因斯坦方程?为什么非激光光源不会产生多光子光电发射? |
|
黄宝:
呵呵!光的粒子说有这么多的问题,光的波动说问题也少不到那儿。我就数说一下波动说存在的问题。 1、以太问题 光的波动说需要以太这种介质,但以太存在着许多矛盾的力学性质。根据光是横波和光速巨大,由弹性力学可得出以太应是比钢铁还要硬得多的固体,但地球在其中运动又丝毫不受阻力;固体中既能产生和传播横波,又能产生和传播纵波,但光没有丝毫纵波的成分。更为重要的是,以太风又被迈克尔逊——莫雷试验否定了,据此以太也就不存在了。没有了光介质,光的波动说也就站不住脚了。当然你认为以太是存在的,这一条对你来说不是问题。 2、弹性波问题 弹性介质中物质粒子间有弹性相互作用,当某处物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起周围粒子的应变和振动,这样形成的振动在弹性介质中的传播过程称为“弹性波”。电磁波是通过以太来传播的,以太具有弹性吗?电磁波是弹性波吗? 3、寿命问题 我们知道,波在介质中的传播会因能量的散失而逐渐衰减,振幅会越来越小,最终消失。那么,在宇宙中传播几百亿年的光波为什么仍然存在?它为什么不会衰减? 4、连续问题 我们知道,波的图象一般是一条连续的曲线,如正弦曲线。通常把电磁波和光波也画成正弦曲线。人们认为波所具有的能量是连续的,电磁波当然也不例外。但普朗克的能量子无疑证明电磁波是不连续的。光是不连续的,它们的能量是一份一份发射出来的。这样说来,电磁波和光到是什么波?你认为光是一个个的量子以太涡旋组成的波,这一条又可以不算。 5、固体问题 光波是横波,只有固体介质才能传播横波,光的介质以太应是固体。但地球怎能在固体以太中毫无阻力地运动呢?你认为光是一个个的量子以太涡旋组成的波,以太只是传光的时候才似固体,这一条也可以不算。 6、波动说不能解释光电效应。 7、光的波动说不能解释黑体辐射及能量子公式的推导。 8、波动说不能解释康普顿效应。 宗荣: 其实波粒两象性也存在的问题: 1、波粒不相容问题 粒子是一个个的物体。牛顿把它叫做“质点”。粒子的最明显的特点就是它的“集中性”、“可数性”、不连续性和无周期性。它的质量集中在一个相对较小的空间区域内,即粒子本身中。 波是大量粒子在媒质中的相互作用而产生的振动的传播,具有连续的广延性、非集中性和周期性,并且能发生衍射和干涉现象,两列波相遇重叠时各保持自己的原有的波形。而粒子不可能发生衍射或干涉现象。两个粒子相遇时会发生碰撞,不能相互无阻通过。所以波和粒子是相互矛盾和不相容的,它们怎样融合在一起? 2、波粒嫁接问题 波粒的物理模型完全不是出自天然,而是人为的刻意的和强加的,留下了刀工斧凿的明显痕迹。就象把桃树和李树嫁接在一起,结出既不象桃也不象李的杂交果。在大自然中,只有分立的粒子和波,根本上没有波粒子这样的怪物。 3、光量子物理实质问题 光量子理解起来非常困难。光量子到底是什么?它是指一种物理实体,还是仅仅指一份能量(动量),它与电磁波又有何关系?这很难把握。爱因斯坦对此也感到左右为难。他曾经说“这个问题足够把他赶进疯人院了”。尽管对光场的量子化已有了量子电动力学并有了重正化理论,但在他逝世前4年,也就是在量子电动力学重正化理论提出后3年,爱因斯坦又说:“整整50年的自觉思考,没有使我更接近于解答‘光量子是什么’这个问题。的确,现在每一个不老实的人都相信,他懂得它,可是他在骗他自己。” |
|
葛兴:
你们说的都对。我们把这些问题找出来,不是象前人那样,把波动说和粒子说对立起来。而是要找到一种光的物理新说,或者找到一种新的光的物理新结构,使上述种种问题都得到合理的解释。 宗荣: 我明白你的交变电流产生的电磁波是密度波的说法。交变电流会在其周围产生交变的量子以太涡旋。也就是说:电流为零,产生的量子以太涡旋密度也为零;电流增大,产生的量子以太涡旋密度也为增大;电流不变,产生的量子以太涡旋密度也不变;电流减少,产生的量子以太涡旋密度也减少;电流反向,产生的量子以太涡旋也反向。 黄宝: 那么,可否说电磁波就是量子涡旋的密度波? 葛兴: 基本上可以这么说。特别要注意这样一种情况:表面看起来电子产生的量子涡旋密度是不变的,但也会因电子本身的阻挡作用产生交变的量子以太涡旋。光的波粒物理模型或光的本性如图一所示。 |
|
谢谢!
以太在通常状况下是超流体,超流体能被带动而形成永远存在涡旋。电流能带动以太产生很多个很小很小的以太的量子涡旋,每个涡旋的角动量的大小基本上是相同的,于是磁是量子以太涡旋。对于固定不变的磁场来说,这些单个的量子以太涡旋的密度和方向都是固定的。这种量子以太涡旋会在以太中传播。由于量子以太涡旋的个数的多少和方向是可以变化的,它可以是一种总角动量是“交变”的量子以太涡旋,这种总角动量交变的以大量子涡旋及其传播就是电磁波了。光也是电磁波的一部分,因此,光也是一种总角动量“交变”的量子以太涡旋波。 光是不连续的。磁是量子以太涡旋,这种量子以太涡旋不是一整个涡旋,它非常小,是一个个的量子以太涡旋,这种量子以太涡旋是大量的,不连续的。同样的道理,光是大量的交变的量子以太涡旋在空间中的传播,因此光波是不连续的。完全不象连续的机械弹性波。 光的密度波说能说明光的一切特性。我们提出一个量子以太涡旋由大量的以太微粒组成,一个量子涡旋不能等效于一个粒子。实际上,一个量子以太涡旋就是一个光子,它具有一定的转动惯量和角动量,从这种意义上说,它有些象粒子。转动惯量和角动量对应于粒子的质量与动量。这就是光具有粒子性的根本原因。量子以太涡旋角动量的总体也可以呈现出“交变”的状态——电磁波,量子涡旋角动量的方向由涡旋转动方向决定,大小由量子涡旋的密度决定。这就是光具有波动性的根本原因。 爱因斯坦16 岁在阿劳中学上学时,这样想到:如果以光速 C 追随一条光线的运动,那么就应该看到,这样一条光线就好像一个在空间振荡而停滞不前的电磁场。其实不然。如果以光速 C 追随一条光线的运动,我们看到的应是这样一幅图象:这条光线由大量的一个个的量子以太涡旋组成。因为人与量子以太涡旋的速度都是C,于是这些以太的量子涡旋看起来是静止的,但是所有这些量子以太涡旋的密度和方向对于不同的观察者来说,在不同的空间点是象波一样在不断地“交变”着。 量子以太涡旋总体上的角动量的大小和方向的变化就是光的频率,光产生于原子核外电子绕核运转。核外电子运转时产生出大量的量子以太涡旋,电子绕核运转的频率就是光的频率。这样我们就解释了光的频率。 我们可以看到,波粒两象性在这里不再是矛盾的,它们得到了美妙的统一。只不过把粒子改为量子,把波粒两象性改为波量两象性就更为贴切了。历史上长期的波粒之争,到此就可以降下帷幕了。 黄宝: 我们不是对光的粒子说、波动说和波粒两象性提出过许多问题,如果你提出的光的密度波说是正确的,那一定能解释这些问题。那就请你逐一地解释这些问题吧! |
|
葛兴:
好吧!就从光的粒子说存在的问题说起。 1、黑布问题 如果光是粒子的话,那么光为什么不能通过既漏水又漏气的薄薄黑布,却能通过不漏气不漏水的厚厚玻璃呢? 光粒子说虽然无法解释这一问题,但这一问题可用光的波动说来解释。 其实,玻璃透明问题与黑布不透明问题是同一问题的两个方面。由于光是一种波动,具体地说,光是交变的量子以太涡旋波,也就是以太量子涡旋的密度和角动量的方向在不断地变化着,并向四周扩展传播。玻璃是由原子组成的,原子是由原子核和绕核运转的电子组成。电子在绕核运转时会产生交变的量子以太涡旋,这样就会在空间中产生各种频率的电磁波。如果空间的量子以太涡旋的密度大于电子产生的量子以太涡旋的密度,且物质形成的微观空腔正好和某种频率的光波发生共振,物质中的电子就会由于共振而得到能量。例如,当光照到玻璃上时,这种频率的光和玻璃中的同频率的量子以太的涡旋发生共振,这样光的量子以太涡旋由于共振的原因,可由一个电子传到另一个电子,由玻璃的一面传到玻璃的另一面而通过玻璃,这就是透明。无色玻璃是指各种频率的光都能由玻璃的一面传到另一面。否则玻璃就是有颜色的了。由于玻璃对光波共振强烈,对光的吸收作用很小,所以光能通过它。 至于黑布不透光的原因是这样的:光线中量子以太涡旋的频率和黑布中元素电子产生的量子以太涡旋的频率是不同的,或者其物质微观结构不能和这种频率的光波形成共振腔从而不能发生共振。于是黑布就当然就不能让光线通过了。或者说,黑布几乎吸收了所有的光,它把吸收的光能变成热能。因此黑布在太阳光的照射下将很热。 由此可知,透明物质必须满足两个条件,一是物质元素中的电子能产生和光频率相同的量子以太涡旋,二是物质的微观结构能形成和光频率发生共振的共振腔。至于透气漏水那是无关紧要的。 2、质量和速度问题 如果光是粒子的话,粒子又是有质量的。黑体在连续不断地接受光粒子时,它的质量就会增加。结果是:无论多久没人能测出黑体质量的增加。为什么?有粒子的吸收,测不出质量的增加?光子的静止质量为什么是0?光子的速度为什么仅仅只有光速一种? 用光的波动说也能很容易解释。因为波动过程中只有能量的传播而没有物质的转移。一个所谓的光子也就是一个量子以太涡旋,它的静止质量当然不是零。所谓光子的速度也就是量子以太涡旋以孤立波传播的速度,在特定的介质中,波的传播速度是固定的。 3、寿命问题 量子论告诉我们,光的行径犹如一颗颗的微粒,每一粒子带着一定的能量,并且用光的速度在飞行着,这些微粒碰到了其它物体,便会产生能量或动量的变化。这就是光的微粒的图象。我们知道,在空气中飞行的子弹速度会越来越慢,那么,在宇宙中飞行几百亿年的光子速度为什么丝毫不变?光子有不有一定的寿命? 光是交变的量子以太涡旋,而以太又是超流体,超流体涡旋一经产生,便不会消失。所以光不存在寿命问题。只不过随着量子以太涡旋按平方反比率扩散,光的强度会越来越弱。 4、碰撞问题 两束光反向相遇,两束反向运动的光子之间一点也不会发生碰撞,好象对方不存在一样。 用波动说也不存在这个问题,波的传播从来没有碰撞问题,这就是波的传播互不相干原理。 5、加速问题 当光从一种媒质进入另一种媒质时,速度会突变,为什么光子的速度在同一种媒质里保持不变,而在两种媒质的界面上发生突变呢?光子从光密媒介进入光疏媒介时,光子的运动会加速。光子从光疏媒介进入光密媒介时,光子的运动又会减速。由牛顿力学可知,此时光子一定会到力的作用,那么,在两种媒质的介面上,是谁对光子施力呢? 光的波动说也不存在这个问题。因为不存在光子的运动,而是量子以太涡旋以孤立波的形式在波动。在两种媒质的介面上,因光在两种媒质中的速度不同,会自然地产生折射。 6、纵波问题 我们知道,气体和液体等流体内只能传播纵波。根据粒子说光波应是纵波,因为光子的运动方向与其传播方向一致。光子可以看成一种流体,因此,光子不可能产生和传播横波。但光是的确是一种横波, 丝毫没有一点纵波的成分。为什么是这样的呢? 因为光是由交变有量子以太涡旋形成的。介质的振动是与涡旋直径垂直的方向,而光的传播方向就是涡旋直径的方向。所以光是横波。 7、偏振片问题 取两个相同的偏振片,光是能够通过其中一个的。但是将两个偏振片重迭起来,并转动其中一个偏振片,就会有一个位置,光完全不能通过两个重迭的偏振片。光子能够通过其中一个,为什么不能通过重迭的两个? 这一现象恰好说明了光是一种横波。量子以太涡旋是一个很扁的圆盘形,不是球形。因量子以太涡旋以高速旋转,离心作用使其沿径向拉扁。偏振片本质上是一个狭缝,光通过第一个狭缝变成了偏振光,它当然通不过另一个垂直的狭缝。 8、光量子存在问题 能量子和光量子是真实存在的吗?它的物理结构是怎样的? 能量子和光量子当然是真实存在,一个能量子和光量子的物理结构就是一个量子以太涡旋。 9、波长问题 干涉、衍射这是波动才特有的现象。光的粒子说能在粒子的什么地方能加上一个频率或波长的物理特性? 波动说不下存在这个问题。波长、频率、干涉、衍射这是波动的标签性特征。 10、单光子干涉实验问题 1909年泰勒曾做了一个很奇特的实验。他先在强光下拍摄了一根细针的衍射像,然后减弱光束的强度,延长曝光时间,有一次达三个月之久。当他把光束衰减到只有一个光子进入仪器时,所得到的衍射像与强光短时拍摄的完全相同。泰勒的实验表明,干涉与衍射,并不象人们通常认为的那样,是多个光子同时存在并相互作用而产生的。相反,单个的光子也能产生干涉与衍射。此后,他又作了单光子的双缝干涉试验,结果相同。单光子干涉试验给光的粒子说提出了这样一个致命的问题:设想当弱光束在双缝上实现单光子干涉时,一个光子怎么能“部分”地穿过一个缝,同时又“部分”地穿过另一个缝,然后自己的一部分和自己的另一部分发生干涉呢? 对于单个“光子”干涉现象,完全可以用量子以太涡旋波来作出回答。当量子以太涡旋射向双缝屏时,每一个量子以太涡旋穿过每一个缝都有一个量子以太涡旋密度,而在光屏上的每一点也将对应一定的量子以太涡旋密度,这些量子以太涡旋密度的叠加,就形成了干涉图样。 11、独立光束干涉试验问题 激光出现以后,曼德尔等人进行了独立光束干涉试验。他们用两只脉冲式红宝石激光器作为两个独立的光源。为了保证条纹的可见度,采用了光电符合技术以消除各种频率漂移使信号产生的干扰。结果获得了条纹可见度为15%的干涉图样。经过改进,完成了高度减弱的两束独立激光之间的干涉。这一试验中,高度减弱的两束独立激光每一束中一次只能有一个光子入射。也就是说,当一束激光发出一个光子时,另一束激光发光子的几率仅有万分之一。独立光束干涉试验给光的粒子说带来一个致命的问题。因为独立光束的 “单光子干涉”发生的是双光干涉,当第一个激光器发出的光束中仅有一个光子奔向控制器时,第二个激光器还未发出光子,第一个光子就已经与第二个尚未到来的光子发生了干涉效应。然而,当把一束激光关掉时,这种干涉就消失了。这就说明光子能预见与它干涉的光子即将到来,提前发生了作用,或者说光子能与 “虚无”发生作用。这是光的粒子说中令人无法接受的致命问题。 独立光束干涉试验证明光不是粒子。其解释类似于上一条中的单光子干涉实验问题。于是人们看到,在处理光的干涉问题时,光子的概念似乎是不必要的,甚至是多余的。人们看到,当把光的微观客体视为“光子”时,并不意味着它类似于某种微观微粒,而是一种量子以太涡旋波。 12、光电效应问题 1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射。1968年Teich 和Wolga用GaAs激光器发射的hn=1.48eV的光子照射逸出功为2.3eV的钠时,发现光电流与光强的平方成正比。按爱因斯坦方程,光子的频率处于钠的红限频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比。于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射。后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射。人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比。光电效应的粒子的解释就有如下困难:为什么某些激光不遵循爱因斯坦方程?为什么非激光光源不会产生多光子光电发射? 其实这个问题不难用密度波波说来解释。因为光的本质是量子以太涡旋波,激光的强度极大,就意味着其量子以太涡旋密度极大。所以光的能量仅仅与频率有关是有局限性的,这只对普通光源才适用,对量子以太涡旋密度极大的激光光源就不适用了。 |
|
黄宝:
粒子说的问题对于你来说不算困难,但波动说的问题恐怕就是很棘手的哟! 葛兴: 那就试试吧!真金不怕火炼嘛! 1、以太问题 光的波动说需要以太这种介质,但以太存在着许多矛盾的力学性质。根据光是横波和光速巨大,由弹性力学可得出以太应是比钢铁还要硬得多的固体,但地球在其中运动又丝毫不受阻力;固体中既能产生和传播横波,又能产生和传播纵波,但光没有丝毫纵波的成分。更为重要的是,以太风又被迈克尔逊——莫雷试验否定了,据此以太也就不存在了。没有了光介质,光的波动说也就站不住脚了。 我已经提出以太存在的种种理由。这一条对我来说不是问题。 2、弹性波问题 弹性介质中物质粒子间有弹性相互作用,当某处物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起周围粒子的应变和振动,这样形成的振动在弹性介质中的传播过程称为“弹性波”。电磁波是通过以太来传播的,以太具有弹性吗?电磁波是弹性波吗? 电磁波是通过以太来传播的,以太没有弹性,电磁波不是弹性波。电磁波是量子以太涡旋波。电子的运动是波源,只要有交变电流子产生,或者只要有电子绕核运动,就会产生量子以太涡旋波。所以电磁波与机械波有本质的不同,它是不连续的,它不是弹性波。 3、寿命问题 我们知道,波在介质中的传播会因能量的散失而逐渐衰减,振幅会越来越小,最终消失。那么,在宇宙中传播几百亿年的光波为什么仍然存在?它为什么不会衰减? 这个问题已经回答过。这里再重复一下。光是交变的量子以太涡旋,而以太又是超流体,超流体涡旋一经产生,便不会消失。所以光不存在寿命问题。 4、连续问题 我们知道,波的图象一般是一条连续的曲线,如正弦曲线。通常把电磁波和光波也画成正弦曲线。人们认为波所具有的能量是连续的,电磁波当然也不例外。但普朗克的能量子无疑证明电磁波是不连续的。光是不连续的,它们的能量是一份一份发射出来的。这样说来,电磁波和光到底是什么波? 我认为光是一个个的量子以太涡旋组成的波,所以光是不连续的,它们的能量是一份一份的。一个量子以太涡旋就是一个能量子,和普朗克的能量子观点是完全吻合的。 5、固体问题 光波是横波,只有固体介质才能传播横波,光的介质以太应是固体。但地球怎能在固体以太中毫无阻力地运动呢? 这个问题在前面已经详细论述过。我认为光是一个个的量子以太涡旋组成的波,而且由于光的频率极高,以太只是传光的时候才类似固体。以太对地球来说是超流体,超流体没有摩擦阻力和粘滞力,地球在超流体以太中毫无阻力地运动。 6、波动说不能解释光电效应。 光照射到某些物质上,会引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应。 从微观看来,不管什么光电效应,归根结底,乃是光与电子相互作用带来的结果。二者相互作用,各自产生了相应的变化:对于光而言,它或被吸收,或改变频率和方向;对于电子而言,发生了能量和状态的变化,从束缚于局域的状态转变到比较自由的状态,从而致使物质电特性发生了变化。 光电效应是把两个金属电极即阴极K和阳极A安装在抽成真空的玻璃泡中,在阳极和阴极之间加上直流电压并串联一个灵敏电流计G。当光不照射阴极K时,玻璃泡内阴极K和阳极A之间的空间无载流子,如果不顾及暗电流的话电阻为无穷大,没有电流流过G。当有光照射阴极K时,便有光电子从阴极飞出,在电压作用下,飞向阳极A,G中便有稳定的光电流流过。 1899——1902年,赫兹的助手勒纳德利用各种频率和强度的光,对光电效应进行了系统的实验研究,发现了三条实验规律。 1、当一定频率的光照射金属阴极K时,只要阴极与阳极之间有足够的加速电压,光电流正比于光强。 2、每种金属各自存在一个足以发生外光电效应的最低的红限频率n0。当照射光的频率n< n0时,不会逸出光电子;当入射光的频率n> n0时,不管光多么弱,都会立刻发射光电子,不存在时间滞后。 3、光电子从金属表面刚逸出时的最大初动能1/2mvv与光的频率有线性关系,与入射光的强度无关。 电子是如何吸收光子的能量的,它的具体物理过程是怎样的?光的频率是如何转化成电子的速度? 下面我们就用光的波动说来解释光电效应的物理本质及其上面提出的问题。 我们知道,原子是由原子核和绕核运转的电子组成。电子在绕核公转时就会在其轨道平面上产生一系列大小和方向都在不断变化的以太量子涡旋。另一方面,我们周围的空间中本来就存在着由其它物质电子产生的各种频率以太量子涡旋。它们也具有一分分的能量。当电子在绕核公转时的频率和空间中某种频率的以太量子涡旋的频率和相位相等时,它们之间会产生共振而互相交换能量。电子既能产生以太量子涡旋,在一定的条件下也能吸收这些以太量子涡旋。电子因产生以太量子涡旋而损失能量以后,其产生的以太量子涡旋的密度会越来越小。当密度小于空间以太量子涡旋的密度时,绕原子核运转的电子会自动地吸收空间的以太量子涡旋的能量,直到它们的密度相等为止。光、电磁波和热具有辐射的物理本质就是这种共振。因此,只要温度不是绝对0度,绕原子核运转的电子就永远不会落到原子核上。稳态原子电子轨道有许多个,每一个稳态原子电子轨道的频率是固定的,但轨道的高度有一个范围。电子的能量越大,轨道越高,线速度越快。当电子从以太量子涡旋中吸收了一定的能量,电子轨道升高到一定的程度以后,电子会变得不稳定,此时,电子会加大频率而进入另一个稳定的电子轨道,这就是电子轨道的跃迁。显然,电子轨道在跃迁前必须吸收一定频率的以太量子涡旋的能量。当光照在金属上,金属分子中的电子运转的频率相位和光的频率相位一致时,电子就会因共振而不断得到空间以太量子涡旋的能量而离核越来越远,直至逃离原子核,这就是“光电效应”。因此“光电效应”是可以用光的波动说来解释的。 尽管金属核外电子运转的频率是各式各样的,对于某种金属而言,核外电子运转的频率有一个最小值,只有光的频率等于或大于这一频率,金属核外电子才能和光产生共振。这也就是外光电效应存在的红限频率n0的原因。 一般而言,金属最外层的核外电子容易逃逸。显然,核外电子从稳定状态到逃离原子核,脱离原子核的束缚,必然要获得能量才行。这一能量就是金属逸出功φ了。 逃离原子核的电子的频率越快,其转速也越快,其动能当然也越大,因此,光电子从金属表面刚逸出时的最大初动能1/2mv2与光的频率有线性关系,与入射光的强度无关。因为我们前面已经证明电子绕原子核从高能量轨道向低能量轨道跃迁时,在波形图0-2π区间的消耗的总能量E=hv ,反过来,电子绕原子核从低能量轨道向高能量轨道跃迁时,在波形图0-2π区间吸收的总能量也为E=hv ,根据能量守恒定律就有, hv=1/2mvv+φ 光电效应的波动说很容易解释电子是如何吸收光的能量的,它的物理过程是怎样的,光的频率是如何转化成电子的速度的。 电子的绕核运动和光的以太量子涡旋发生共振,在共振过程中,电子吸收以太量子涡旋的能量。或者说光释放能量,电子吸收能量。光的频率是与电子绕核的转动频率发生共振从而改变电子的逃逸速度。电子绕核的转动频率越高,它绕核的转动越快,逃逸速度也越大。 因此“光电效应”是可以用光的波动说来解释的。而且解释得更加深刻,更加直观和更加合理。 |
| 叶公可以把大作放到国家科技图书文献中心预印本服务上发表 |
|
为什么散射光中除了有原波长λ0的x光外,还产生了波长λ>λ0 的x光呢?这是因为x光作用于石墨晶体以后,大量的量子以太涡旋在石墨晶体的传播以及和石墨晶体中的电子的共振是一种振动,但此时不是自由振动,而是阻尼振动。由理论力学可知,如果对量子以太涡旋的阻力矩N的大小近似地与量子以太涡旋的角速度ω'的一次方成正比,光的周期在传播过程中会因量子以太涡旋的阻尼而变大。这正好对应着波长增加,频率变小。其波长的增量又为什么随散射角的不同而变化呢?这是因为随散射角θ的增加阻尼也增加,阻尼增加,光的周期在传播过程中会进一步增大,波长差Δλ=λ-λ0当然会增大。这是定性的解释。 |
|
黄宝:
关于波粒两象性存在的问题又如何解释呢? 葛兴: 1、波粒不相容问题 粒子是一个个的物体。牛顿把它叫做“质点”。粒子的最明显的特点就是它的“集中性”、“可数性”、不连续性和无周期性。它的质量集中在一个相对较小的空间区域内,即粒子本身中。 波是大量粒子在媒质中的相互作用而产生的振动的传播,具有连续的广延性、非集中性和周期性,并且能发生衍射和干涉现象,两列波相遇重叠时各保持自己的原有的波形。而粒子不可能发生衍射或干涉现象。两个粒子相遇时会发生碰撞,不能相互无阻通过。所以波和粒子是相互矛盾和不相容的,它们怎样融合在一起? 由于量子以太涡旋是量子而不是粒子,所以波粒不相容问题在这里是不存在的。量子以太涡旋是以孤粒子波动方式运动,两个量子以太涡旋相遇时不会发生碰撞,而是以两量子以太涡旋孤粒子波相遇,它们重叠时各保持自己的原有的波形。能相互无阻通过。所以波和量子是相互无矛盾和能相容的。量子以太涡旋角动量矢量波既不是单个的粒子,也不是连续波。它是大量的量子以太涡旋角动量矢量波。 2、波粒嫁接问题 波粒的物理模型完全不是出自天然,而是人为的刻意的和强加的,留下了刀工斧凿的明显痕迹。就象把桃树和李树嫁接在一起,结出既不象桃也不象李的杂交果。在大自然中,只有分立的粒子和波,根本上没有波粒子这样的怪物。 由于量子以太涡旋不是粒子,而是量子。单个的量子以太涡旋显示量子的特性,大量的量子以太涡旋显示出波的特性,这是很自然的事情。 3、光量子物理实质问题 光量子理解起来非常困难。光量子到底是什么?它是指一种物理实体,还是仅仅指一份能量(动量),它与电磁波又有何关系?这很难把握。 光量子理解起来一点也不困难。一个光量子就是一个量子以太涡旋。它是既是一种物理实体,也是一份能量(角动量),电磁波是量子以太涡旋矢量的密度波。这很容易把握。 简而言之,电子在超流体以太中运动,就会产生一个个的量子以太涡旋。这些量子涡旋以一定的速度在以太中波动,就象一个个的量子涡旋在以太中孤立地运动一样。从这种意义上讲,它有些象孤立子了。量子涡旋是由运动的电子或电流产生的,量子涡旋的多少(或它的密度)与电流大小成正比,方向也由电流的方向来决定。所以,量子涡旋的波形完全由相对应的电流的波形来决定,完全不是几率波。但是光产生的量子以太涡旋密度波是由绕核运转的电子本身对其产生的量子以太涡旋的阻挡作用而形成的,不是由电流的大小形成的。 好了,到此我们就用光的密度波说回答了光的所有问题。还有什么问题吗? |