|
第四节 太阳耀斑提供的证据 我们必须找到电磁波的速度与频率有关的具体证据才行,那里有这样的证据呢?只有在某处同时产生各种频率的电磁波,然后测量它们到达另外一点的先后才行。太阳耀斑的爆发非常复杂但粗略地能满足这一要求。太阳耀斑爆发的同时会产生各种频率的电磁波,只要用射电望远镜或太阳射电频谱仪观测不同频率电磁波到达地球的先后,就能判断电磁波的速度与频率是否有关。如果各种频率的电磁波同时到达,波速与频率自然没有什么关系,如不是同时到达呢,那就是与频率就有关了。怎样确定各种频率的电磁波是否同时到达呢? 射电天文学对太阳耀斑进行了详细的研究。一旦太阳上突然发生耀斑之类的强活动时,便会出现一种变动剧烈、迅速而且频繁、短促的“射电爆发”。 射电爆发起源于低层色球,然后抛射到高层日冕的广阔的太阳大气中,因为发生在色球层中,所以也叫做“色球爆发”。它们的辐射强度非常大,从4毫米到40米之间的所有波长上都会出现。可是在不同的波长上,它们呈现出迥然不同的特征。 在微波段的射电爆发是最简单的一类,通常是一开始强度突然上升,迅速达到极大,然后较缓慢地下降。 分米波爆发比较复杂,按照频谱性质分为如下两类:一类为分米波连续辐射,其频带较宽,形态与微波爆发相似,故认为它是微波爆发在长波端的延伸。另一类为分米波快漂移爆发,也称为Ⅲ型爆发。其持续期很短,常成群出现,它的特征是辐射频率随时间发生很快的变化,从高频漂移到低频,漂移速率很大,通常超过每秒100兆赫。 在米波和分米波段的射电爆发与其它波段射电爆发完全不同,仅凭单个频率上的观测已不能满足要求。因此,专门设计了一种叫做“太阳射电频谱仪”的仪器来研究它们的活动过程。这种频谱仪能在很宽的波段内,利用快速扫描的方法,来同时进行许多波长上的观测,如果不考虑爆发的强度,就获得了爆发的频率和时间两个参量的“运动频谱图”。 在米波和分米波段的射电爆发是具有较慢的频率漂移的Ⅱ型爆发,因此又称慢漂移爆发。这种爆发的特点是,其频率明显地随着时间从高频向低频漂移。也就是说,先看到的是高频电磁波,后看到的是低频电磁波,这种爆发的频率漂移速率较慢,一般是每秒钟不到1兆赫。 Ⅲ型爆发生频率在10kHz ~1GHz的范围内,其特征是具有快速的从高频向低频漂移的。在米波段漂移速度约100MHz/s. Ⅲ型爆的强度小及持续时间很短,并且和频率成反比。由于快频率漂移的频率比慢频率漂移要大100倍,其时间与频率曲线要陡很多倍,这从大耀斑射电爆发典型频谱示意图中可以看到。 频率慢漂移爆发的传统解释是爆发源在日冕中以每秒钟一千多公里的高速向外运动,因而引起爆发的频率慢慢地向低频漂移。频率快漂移爆发则是爆发源在日冕中作每秒钟十万公里的巨速向外运动。这两种解释都是站不住脚的,因为如果爆发源在日冕中作从太阳中心向外的运动,它与我们越来越近。根据多普勒效应,此时频率漂移就应当从低频到高频(蓝移),而不是从高频到低频(红移),这就与观察事实严重不符。由于太阳万有引力的作用,耀斑开时始爆发物只可能因其巨大的爆发动能从太阳表面被抛起,先作从太阳中心向外的运动,爆发物上升到太阳表面一定的高度,其爆发时的动能全部转变成引力势能,在引力势能作用下爆发物才会下落。于是爆发开始时用爆发源的运动直接解释频率漂移是不成立的。当然,传统的解释也可以是这样:爆发源在爆发期间快速向太阳外层运动,以观察者对太阳中心的视线为例,在t1 时刻的A点发出的辐射和运动一段时间后的t2时刻的B点发出的辐射都有蓝移,但由于太阳引力运动是减速的,在B点发出的辐射兰移要小一些,因此在B点的辐射频率比A点发出的低,而A点的辐射先到达地球,B点的辐射后到达,于是产生了频率飘移,这种解释看起来是合理的,但存在两个问题。第一,如果是爆发源在太阳上减速造成的,那么不仅仅是米波频段才有爆发的频率慢慢地向低频漂移,所有频段的爆发都在作同样的运动,都应有同样的频率慢漂移。但频率漂移只在米波和分米波频段才有,而在微波以上频段上没有。第二,按传统解释,同一耀斑应是一样的,可是对同一耀斑在不同的波段上的观测发现有频率快漂移和频率慢漂移两种,传统的解释是两种漂移的速度不同而相差100倍,这就与同一耀斑速度应是一样的相矛盾。 事实上,频率漂移爆发应当是由频率不同的电磁波速度各不相同引起的。其原理是这样的:太阳耀斑爆发时各种频率的电磁波也同时爆发。电磁波爆发传到地球时,在在米波和十米波段,频率较高的电磁波速度较快,先到达地球上的太阳射电频谱仪,频率较低的电磁波速度较慢,后到达太阳射电频谱仪,也就是频率高的电磁波先在太阳射电频谱仪上显示出来,频率低的电磁波后在太阳射电频谱仪上显示出来,这才是频率漂移产生的根本原因。 频率最小的电磁波的速度最低。这个速度是多少呢?电磁波可以看成是交变的磁场,稳恒的磁场可以看成是频率等于0的电磁波,稳恒的磁场的传播速度就是电磁波传播速度的最低值。 太阳耀斑爆发的同时一般会引起太阳上的大磁暴。光线从太阳传到地球只要8分钟,但太阳上巨大的磁暴到达地球引起的地球磁暴要一到两天。根据相关资料,大约在800到2400分钟之间,这就充分说明光的速度要比磁场的传播速度快100~300倍,所以磁场的传播速度不是光速,约为光速的1/100到1/300。 怎样计算频率慢漂移每下降1MHz波速减小多少呢?可以这样考虑:光线从太阳传到地球大约要500秒的时间。根据频率漂移大约等于1 MHz/秒,那么频率每低1 MHz的电磁波传到地球就要多花1秒,比如501秒。 从光速开始其速度减慢约为:(300000km/秒×500)÷501=299400 km /秒=(300000-600)km /秒。也就是说,频率每降低1 MHz它们的速度差不多要减小600km/秒。 |