财经社区女性社区汽车社区军事社区文学社区社会社区娱乐社区游戏社区个人空间
上一主题:反相的数学高手物理高手们都哪去... 下一主题:网上相对论学者以真理的化身出头...
洛仑兹变换的具体数学推导
[楼主] 作者:fuj0  发表时间:2008/04/12 11:17
点击:1724次

关于洛仑兹变换,网上讨论很多。我找了两个版本的推导过程。不过是英文的。

本人在阅读中文版的高等教材觉得很吃力。怪自己的语文不好,也怪翻译得有问题。

论讨争议最大的是第一个版本。我找的这篇原文写得很清楚。想必可以解决一些疑惑。

 版本1

FOR the relative orientation of the co-ordinate systems indicated in Fig. 2, the x-axes of both systems permanently coincide. In the present case we can divide the problem into parts by considering first only events which are localised on the x-axis. Any such event is represented with respect to the co-ordinate system K by the abscissa x and the time t, and with respect to the system k' by the abscissa x' and the time t'. when x and t are given.   1
  A light-signal, which is proceeding along the positive axis of x, is transmitted according to the equation
x = ct
or

Since the same light-signal has to be transmitted relative to k' with the velocity c, the propagation relative to the system k' will be represented by the analogous formula

Those space-time points (events) which satisfy (1) must also satisfy (2). Obviously this will be the case when the relation (很明显,如果公式3 成立,公式1,2就会成立)

is fulfilled in general, where indicates a constant; for, according to (3), the disappearance of (xct) involves the disappearance of (x'ct').
   2
  If we apply quite similar considerations to light rays which are being transmitted along the negative x-axis, we obtain the condition

   3
  By adding (or subtracting) equations (3) and (4), and introducing for convenience the constants a and b in place of the constants and where

and

we obtain the equations

   4
  We should thus have the solution of our problem, if the constants a and b were known. These result from the following discussion.   5
  For the origin of k' we have permanently x' = 0, and hence according to the first of the equations (5)

   6
  If we call v the velocity with which the origin of k' is moving relative to K, we then have

   7
  The same value v can be obtained from equation (5), if we calculate the velocity of another point of k' relative to K, or the velocity (directed towards the negative x-axis) of a point of K with respect to K'. In short, we can designate v as the relative velocity of the two systems.   8
  Furthermore, the principle of relativity teaches us that, as judged from K, the length of a unit measuring-rod which is at rest with reference to k' must be exactly the same as the length, as judged from K', of a unit measuring-rod which is at rest relative to K. In order to see how the points of the x'-axis appear as viewed from K, we only require to take a “snapshot” of k' from K; this means that we have to insert a particular value of t (time of K), e.g. t = 0. For this value of t we then obtain from the first of the equations (5)
x' = ax.
   9
  Two points of the x'-axis which are separated by the distance x'=1 when measured in the k' system are thus separated in our instantaneous photograph by the distance

   10
  But if the snapshot be taken from K'(t' = 0), and if we eliminate t from the equations (5), taking into account the expression (6), we obtain

   11
  From this we conclude that two points on the x-axis and separated by the distance 1 (relative to K) will be represented on our snapshot by the distance

   12
  But from what has been said, the two snapshots must be identical; hence x in (7) must be equal to x' in (7a), so that we obtain

   13
  The equations (6) and (7b) determine the constants a and b. By inserting the values of these constants in (5), we obtain the first and the fourth of the equations given in Section XI>.

   14
  Thus we have obtained the Lorentz transformation for events on the x-axis. It satisfies the condition

   15
  The extension of this result, to include events which take place outside the x-axis, is obtained by retaining equations (8) and supplementing them by the relations

In this way we satisfy the postulate of the constancy of the velocity of light in vacuo for rays of light of arbitrary direction, both for the system K and for the system K'. This may be shown in the following manner.
   16
  We suppose a light-signal sent out from the origin of K at the time t = 0. It will be propagated according to the equation

or, if we square this equation, according to the equation

   17
  It is required by the law of propagation of light, in conjunction with the postulate of relativity, that the transmission of the signal in question should take place—as judged from K'—in accordance with the corresponding formula
r' = ct'
or,

In order that equation (10a) may be a consequence of equation (10), we must have

   18
  Since equation (8a) must hold for points on the x-axis, we thus have = 1; for (11) is a consequence of (8a) and (9), and hence also of (8) and (9). We have thus derived the Lorentz transformation.   19
  The Lorentz transformation represented by (8) and (9) still requires to be generalised. Obviously it is immaterial whether the axes of K' be chosen so that they are spatially parallel to those of K. It is also not essential that the velocity of translation of K' with respect to K should be in the direction of the x-axis. A simple consideration shows that we are able to construct the Lorentz transformation in this general sense from two kinds of transformations, viz. from Lorentz transformations in the special sense and from purely spatial transformations, which corresponds to the replacement of the rectangular co-ordinate system by a new system with its axes pointing in other directions.   20
  Mathematically, we can characterise the generalised Lorentz transformation thus: It expresses x', y', z', t', in terms of linear homogeneous functions of x, y, z, t, of such a kind that the relation

is satisfied identically. That is to say: If we substitute their expressions in x, y, z, t, in place of x', y', z', t', on the left-hand side, then the left-hand side of (11a) agrees with the right-hand side.

 

版本2

4. Lorentz Transformations

We are now prepared to deal with the problem of how to relate an arbitrary and coordinate in an unmoving frame to an arbitrary and coordinate in a moving frame. For this we imagine an experiment in which we get rid of the mirror altogether, and simply have the flash bulb at and the photodetector at . The flash bulb flashes at an arbitrary time at , and the light is received at time at . By choosing the initial flash time carefully, it is possible to arrange an arbitrary time at which the light is received. Since the light travels at speed , we have

 

That is what happens in the primed frame. What happens in the unprimed frame? The light starts at some time and travels to the final point at time . Since the light travels at , and the photodetector is moving away from the flash at velocity , and the length of the separation is in this reference frame, the time it takes is given by

At the end of the experiment, the flash bulb has moved a distance from the origin, and the photodetector is a distance beyond that, so

 

Our goal is to obtain equations relating the coordinates and to and . We already have three equations, but we have five unknowns: , , , , and . We need two more equations. Fortunately, since the initial flash was at , we can use the time dilation relation

and the Lorentz contraction relation

to find the desired relationships. From here on out it is all algebra.

First, combine equations (E) and (C) to find a relation for :

That was relatively easy.

Much harder is finding the expression for . We start by solving equation (A) for :

We then use (D) to substitute for and (E) to solve for :

We now solve (B) for , yielding

If we now substitute equation (C) for , we have an expression for exclusively in terms of and , namely

 

We have the transformation properties of and in the two coordinate systems. What we have not been careful about is the transformations of the other coordinates and . Since the motion is only in the direction, it is not surprising that these coordinates are not affected by Lorentz transformations. So the full equations for the Lorentz transformations are given by

 

These equations will be discussed at some length in the next lecture

本帖地址:http://club.xilu.com/hongbin/msgview-950451-107106.html[复制地址]
上一主题:反相的数学高手物理高手们都哪去... 下一主题:网上相对论学者以真理的化身出头...
 [2楼]  作者:刘岳泉  发表时间: 2008/04/12 13:25 

读帖时,帖子不存在
 [3楼]  作者:刘久明  发表时间: 2008/04/12 20:55 

读帖时,帖子不存在
 [4楼]  作者:刘岳泉  发表时间: 2008/04/12 21:14 

对【3楼】说:
    有数学公式我根本就不用去看英文了,我觉得在所有语言中只有数学语言最简练,也许你看得头疼的并不是英语而恰恰是数学。其实这些与变换毫无关系,你把xyz的平方和当成距离除以时间会是什么,只有数学才最容易理解。

※※※※※※
相对论误导科学走斜路,道是非曲折待历史见证;引力场以太旧貌焕新颜,作定海神柱将扭转乾坤。持一份平和心态闯科海,能生命当歌也荣辱以乐;唯真理艰难求索胸怀广,可气吞山河再平展时空。
 [5楼]  作者:西陆陈诚  发表时间: 2008/04/13 09:57 

读帖时,帖子不存在
 [6楼]  作者:拉方  发表时间: 2008/04/13 11:54 

读帖时,帖子不存在
 [7楼]  作者:拉方  发表时间: 2008/04/13 12:05 

倒相的朋友们一定要自觉地同“惯性系平权论”划清界限!
切切!

切不可以用自己的“变换”去推翻别人的/相对论的“变换”。

不要50步笑百步。

 

 [8楼]  作者:拉方  发表时间: 2008/04/13 12:37 

读帖时,帖子不存在
 [9楼]  作者:qstt  发表时间: 2008/04/14 14:36 

读帖时,帖子不存在
 [10楼]  作者:qstt  发表时间: 2008/04/14 15:00 

更正:上文的:相对玻璃运动的另一物质系统观测者观测该光速不再为c',而是只能通过自己观测得的光信号相对自己的光速,和观测得自己与玻璃的相对运动速度,而推理出光信号相对玻璃运动的速度仍为c'。
 [11楼]  作者:tongzr  发表时间: 2008/04/14 23:57 

读帖时,帖子不存在
[楼主]  [12楼]  作者:fuj0  发表时间: 2008/04/16 12:21 

 

 

 

抱歉,最近比较忙。

 

既然,刘先生不喜欢光速不便的前提,没关系。能不能把光速不变作为一个假设?我们既然无法证明光速变还是不变,为什么不能对这两种假设同时研究一下。你的以太理论和相对论都是一种解释迈-莫试验的方法。你的理论说的通,相对论也说得通。要想打倒相对论还要从相对论本身下手。

 

QSTT说的话我大多看不懂,只有C-V=C'看懂了。你实际将C-V错误理解为是一种光速度。如果我作为观察者是静止的,我会发现如果你对着光走,你和光的距离是每秒减少C-V米。这个情况与光速对于你我仍是C没有矛盾。

  

tongzr 也犯了一个错误。

你说:不难看出,对于K'的原点我们永远有x'=0, 按上面相对论的铺垫关系式,必须同时有t'=0; ,当然,同时还必须有:x=0; t=0.

原点X'对于K'系永远是0,但是这个原点是有时间变化的。你坐在行使的汽车上,虽然你没动,可是你的表是走的。虽然原点X'会有一瞬间时间为0,但是此后时间就不为0了。原文说:对于K'的原点我们永远有x'=0。这句话的实际意思是,不管时间如何,永远有一个原点X'。他说得这种情况比你提出的四项全为0的情况要更普遍。

 

最后我解释一下版本2。这是一位哈佛的教授写的.他用一种比较容易理解的方法推倒洛仑兹变换。请大家仔细看一下。过程非常非常精彩。

我贴不上公式,只有链接地址http://cmtw.harvard.edu/Courses/Phys16/l1_latex/l1_latex.html>

请大家帮忙,将全文贴上.我上次只贴了一部分,造成了一些误解和麻烦,抱歉。

 [13楼]  作者:qstt  发表时间: 2008/04/16 12:58 

读帖时,帖子不存在
 [14楼]  作者:qstt  发表时间: 2008/04/16 13:03 

纠正:刚把几处的速成v打成了大写V。
 [15楼]  作者:tongzr  发表时间: 2008/04/16 14:40 

读帖时,帖子不存在
 [16楼]  作者:qstt  发表时间: 2008/04/17 00:15 

读帖时,帖子不存在
[楼主]  [17楼]  作者:fuj0  发表时间: 2008/04/17 00:35 

Tongzr
你说:x'=ax-bct and ct'=act-bx ............... (5) 是两个体系描述同一个光信号。X'=0,只能是一个情况,0值满足方程,即,两个体系原点重合时。离开体系原点重合的K'系的原点X'=0都不是描述光线的点。系数的初值待定,一定是取满足方程的特定的点。

公式(5)不仅可以描述光信号,同样可以描述其他事情。光信号只是其中一个解。爱因斯坦用光信号构建了公式(12345),他的目的是为了通过光信号特解,找到两种坐标系一种普遍的联系。否则的话,他没有必要引入那两个常数啊,只用公式(1,2)即可。普遍联系(5)建立后,爱因斯坦在余下的讨论就脱离了光信号。目的是寻找除了光信号外其他的一些特解,使得这些特解满足公式(5)。

X’=0 实际上描述的是某一物体始终呆在X’=0点,她的时间在流逝。对于k系,该物体始终在运动。K系的时间也在流逝。

其实你往下看,公式(7)的讨论,也脱离了光信号。
希望可以解释你的问题。另外,建议你看看版本2 的链接。版本2 比版本1 好理解得多。

Qstt,
感谢你的纠正。我想爱因斯坦看见我这个错误,也会给我指出来。
重述一下:我作为观察者是静止的,你和一束光之间有距离,如果你对着一束光走,你和光的距离是每秒减少C+V米。同理,如果你反向走,你和光的距离每秒减少C-V米。这个情况与光速对于你我仍是C没有矛盾。

你能不能将版本2 的全本文字及公式贴出来?我不能贴公式。谢谢。
 [18楼]  作者:tongzr  发表时间: 2008/04/17 09:25 

读帖时,帖子不存在
[楼主]  [19楼]  作者:fuj0  发表时间: 2008/04/17 10:17 

tongzr
我对你是没有办法了。你是典型的没看懂别人写的什么,却说别人写错了。你甚至连别人的东西都没看完。
你想想,如果洛仑兹变换只是为光信号合身建的,它凭什么可以应用到非光事件。凭什么专为一个人做得衣服,大家都能穿?用撞大运来解释?
你还有一个不道德行为:自认为抓住别人一个辫子,然后满处宣扬。具有讽刺的是,你连自己抓的是不是辫子都没搞清。该糗的没糗成,反把自己的哥们给糗了。
 [20楼]  作者:qstt  发表时间: 2008/04/17 10:17 

读帖时,帖子不存在
[楼主]  [21楼]  作者:fuj0  发表时间: 2008/04/17 10:22 

读帖时,帖子不存在
 [22楼]  作者:qstt  发表时间: 2008/04/17 10:25 

fuj0

4. Lorentz Transformations

We are now prepared to deal with the problem of how to relate an arbitrary and coordinate in an unmoving frame to an arbitrary and coordinate in a moving frame. For this we imagine an experiment in which we get rid of the mirror altogether, and simply have the flash bulb at and the photodetector at . The flash bulb flashes at an arbitrary time at , and the light is received at time at . By choosing the initial flash time carefully, it is possible to arrange an arbitrary time at which the light is received. Since the light travels at speed , we have

 

That is what happens in the primed frame. What happens in the unprimed frame? The light starts at some time and travels to the final point at time . Since the light travels at , and the photodetector is moving away from the flash at velocity , and the length of the separation is in this reference frame, the time it takes is given by

At the end of the experiment, the flash bulb has moved a distance from the origin, and the photodetector is a distance beyond that, so

 

Our goal is to obtain equations relating the coordinates and to and . We already have three equations, but we have five unknowns: , , , , and . We need two more equations. Fortunately, since the initial flash was at , we can use the time dilation relation

and the Lorentz contraction relation

to find the desired relationships. From here on out it is all algebra.

First, combine equations (E) and (C) to find a relation for :

That was relatively easy.

Much harder is finding the expression for . We start by solving equation (A) for :

We then use (D) to substitute for and (E) to solve for :

We now solve (B) for , yielding

If we now substitute equation (C) for , we have an expression for exclusively in terms of and , namely

 

We have the transformation properties of and in the two coordinate systems. What we have not been careful about is the transformations of the other coordinates and . Since the motion is only in the direction, it is not surprising that these coordinates are not affected by Lorentz transformations. So the full equations for the Lorentz transformations are given by

 

These equations will be discussed at some length in the next lecture.

[楼主]  [23楼]  作者:fuj0  发表时间: 2008/04/17 10:45 

读帖时,帖子不存在
 [24楼]  作者:qstt  发表时间: 2008/04/17 10:55 

fuj0,你还在说某一光信号相对任何惯性系的速度都为c!我已经要求你:如你说仍为c,那就给我说一下你的速度定义。
即使你17楼回答也不严密;你说:“如果你反向走,你和光的距离每秒减少c-v米。这个情况与光速对于你我仍是c没有矛盾”;首先必须有爱氏定义:c>v,才能得出你和光的距离每秒减少c-v米。否则就是你和光的距离每秒增加v-c米!
我在16楼给了你速度定义,设Cc>v,如果你反向走,则光信号相对另一惯性系(反向走的你)的用时为t,其位移矢量为t(c-v),位移矢量与用时t的比值为:t(c-v)/t=c-v=c'!其比值c-v是速度!你却弄出个c-v=c来!
 [25楼]  作者:qstt  发表时间: 2008/04/17 11:01 

读帖时,帖子不存在
 [26楼]  作者:tongzr  发表时间: 2008/04/17 11:25 

读帖时,帖子不存在
[楼主]  [27楼]  作者:fuj0  发表时间: 2008/04/17 11:30 

QSTT
确切地说,综合你写的东西,我找不到中心思想,我不知道你想说什么。

你说:
我简单定义速度为:就是一有限物质(体/系)的一点相对另一有限物质(体/系)的一点运动的位移矢量大小与所用时间多少的比值。至于用数学的极限表示也是如此!
此句中的有限物质(体/系)是什么物理意思?
“另一有限物质(体/系)的一点”指的是另一点但是在同一体系,还是指一点在另一体系。

从你下定义的举动看来,你想用自己的语言来重写有关物理概念。
我对学习你的语言不感兴趣,你能不能用大家公认的物理语言和概念来清楚地讲解你的想法。

谢谢

 [28楼]  作者:tongzr  发表时间: 2008/04/17 11:52 

读帖时,帖子不存在
 [29楼]  作者:qstt  发表时间: 2008/04/17 13:20 

fuj0
“有限物质(体/系)的一点”说的意思很清楚,物质无限!体/系则指物(质)体或物质系统,物体或物质系统是有限物质,其周围环境(包括空间)仍然是不同种类物质!
速度是讨论的一点与另一点之间的相对运动,或者说一个坐标系原点相对另一个坐标系原点的运动;只说一个物体相对另一个物体运动而讨论速度就很含混!就是说每一物体都有无限多的点,因此,数学只能在指定点与点之间来讨论速度!速度是矢量!即使将矢量以极限表示趋向于零,也不能为零,为零则不存在运动及速度!
于是,速度的定义就是:(省略有限物质(体/系))一点相对另一点的位移矢量与所用时间的比值。(位移是矢量,可仅说位移与所用时间的比值即可)。
以导数表示即:速度是矢径对时间的一阶导数。
于是,设c为光信号在玻璃内相对玻璃的一点(玻璃惯性系原点)的传播速度,v为另一物体的一点(该惯性系原点)相对玻璃的一点的运动速度,c>v,如果你反向走,则光信号相对另一物体的一点(该惯性系原点)(反向走的你)传播的用时为t,其位移(矢量)为t(c-v),位移与用时t的比值为:t(c-v)/t=c-v=c'!其比值c-v是速度!你却弄出个c-v=c来!
你认为我的速度定义不对,你就纠正并重新定义得正确或更好!
[楼主]  [30楼]  作者:fuj0  发表时间: 2008/04/18 03:46 

读帖时,帖子不存在

精彩推荐>>

  简捷回复 [点此进入编辑器回帖页]  文明上网 理性发言
 推荐到西陆名言:
签  名:
作  者:
密  码:
游客来访 
注册用户 提 交
西陆网(www.xilu.com )版权所有 点击拥有西陆免费论坛  联系西陆小精灵

0.17664909362793