财经社区女性社区汽车社区军事社区文学社区社会社区娱乐社区游戏社区个人空间
上一主题:(科学时报社*科学网):“科学传... 下一主题:再请和满先生
王睿永的《一般性的sagnac效应》:一个很不错的实验!
[楼主] 作者:yanghx  发表时间:2005/04/20 19:10
点击:378次

王睿永的《一般性的sagnac效应》是篇很不错的文章,
他用实验证明了sagnac效应不只适用于转动的情况,
而且也适用于平动的情况(水平方向保持匀速),
也就间接证明了sagnac效应也是适用于匀速直线运动的情况,

这实际上已经直接质疑了“光速不变原理”?
都知道,以前曾经多次探讨争论过sagnac效应与光速不变的问题,
但总以sagnac只适用于旋转的非惯性系而告终,
jiuguang曾质疑在一个近似直线的弧微段内也应该有sagnac效应,
我也猜测过在直线运动的直光纤内也应该有sagnac效应,
但都苦于没有相关的实验支持而只能作为一个猜测,

现在好了,总算有了一个很不错的实验支持了,
这个实验说来也不算难,只是把光纤陀螺的绕法改变了一下,
把原来圆形的骨架改成了四边形,
而关键是这个四边形骨架的四个角都是转轴连接的,
即成为一个不定四边形,测量时,把一个边AB固定在平台上,
而另一个对边CD就可以灵活的产生平动了,
用匀速滑块带动这个CD边做水平方向的匀速运动,
就可以测量到相应的sagnac相位差(时间差)的输出变化,
小车可以匀速移动的很慢,因为光纤的圈数很多,
而且sagnav属于“1阶效应”,所以较容易测到,

论文是杨新铁老师寄来的(英文,有图片,pdf格式),
因网上不能贴图,可是没有图就不完整了,
所以如有需要者可与他联系,找我也可以,我的邮件地址是:
yanghx@19.cn

希望持相对论的网友发表意见和看法,
我认为此实验直接或间接的质疑了相对论的“光速不变原理”,
不足之处是还难以质疑“相对性原理”,
因为在一个封闭系统中,还无法通过该实验知道系统是否在运动,

 

本帖地址:http://club.xilu.com/hongbin/msgview-950451-65486.html[复制地址]
上一主题:(科学时报社*科学网):“科学传... 下一主题:再请和满先生
 [2楼]  作者:欧阳飞  发表时间: 2005/04/20 20:59 

王先生的实验很成功,非常赞同久广的分析,黄德民也独立设计出了相似的实验。
王睿永的《一般性的sagnac效应》:一个很不错的实验!
 [3楼]  作者:吴沂光  发表时间: 2005/04/21 10:45 

yanghx先生好!我对王睿永的《一般性的sagnac效应》很感兴趣,希望能得到它的全文,我的邮箱为:wuyiguang39@yahoo.com.cn

yanghx先生好!我对王睿永的《一般性的sagnac效应》很感兴趣,希望能得到它的全文,我的邮箱为:wuyiguang39@yahoo.com.cn。

 

 [4楼]  作者:hudemi  发表时间: 2005/04/21 20:37 

我曾设计了几种光速实验方案。当我寄给欧阳飞讨论时,欧阳告诉我,其中的一个方案与王先生的非常接近。

欧阳随后将王先生的文章寄给了我,打开一看,果然与我的一个实验方案非常接近(只不过我的实验方案中没有全部用光纤)。王先生的实验成功,更进一步激发了我做实验的信心。所以前一段时间我一直在努力寻求合作者,希望能够具体实验。我也曾在此论坛打过招呼,等我的实验方案正式发表后,我将在网站上贴出来公开讨论。

请大家稍等一段时间,望到时大家能一起讨论。

黄德民

 [5楼]  作者:hudemi  发表时间: 2005/04/21 20:43 

我的实验方案已征求过张继岳、杨新铁、阎坤、欧阳飞、许少知等人以及中科院光机所有关同志的意见。拟在《发明与创新》杂志上发表
王睿永的《一般性的sagnac效应》:一个很不错的实验!
[楼主]  [6楼]  作者:yanghx  发表时间: 2005/04/21 22:27 

已发出,如有问题再联系?另转贴出英文(无图片)

如还有需要者请来信:
yanghx@19.cn以免占了论坛的版面?多谢支持,

另转贴出英文(无图片),
数学公式也难以正确显示,
只能满足想大概了解一下的网友了:

====================================

《Generalized Sagnac Effect》


RuyongWang, Yi Zheng, and Aiping Yao
St. Cloud State University, St. Cloud, Minnesota 56301, USA
(Received 18 March 2004; published 27 September 2004)


Experiments were conducted to study light propagation in a light waveguide loop consisting of linearly and circularly moving segments.We found that any segment of the loop contributes

to the total phase difference between two counterpropagating light beams in the loop. The contribution is proportional to a product of the moving velocity v and the projection of the segment length
l on the moving direction,   4v  l=c. It is independent of the type of motion and the refractive index of waveguides. The finding includes the Sagnac effect of rotation as a special case and suggests a new fiber optic sensor for measuring linear motion with nanoscale sensitivity.

DOI: 10.1103/PhysRevLett.93.143901 PACS numbers: 42.25.Bs, 03.30+p, 42.81.Pa

The Sagnac effect [1] shows that two counterpropagating
light beams take different time intervals to travel a
closed path on a rotating disk, while the light source and
detector are rotating with the disk.When the disk rotates
clockwise, the beam propagating clockwise takes a longer
time interval than the beam propagating counterclockwise,
while both beams travel the same light path in
opposite directions. The travel-time difference between
them is t  4A=c2, where A is the area enclosed by the
path and  is the angular velocity of the rotation. Since
the 1970s, the Sagnac effect has found its crucial applications
in navigation as the fundamental design principle
of fiber optic gyroscopes (FOGs) [2,3]. In a FOG, when a
single mode fiber is wound onto a circular coil with N
turns, the Sagnac effect is enhanced by N times so that
the travel-time difference is 2vNl=c2, where v is the
velocity of the rotating fiber, l is the circumference of
the circle, and Nl is the total length of the fiber. The
travel-time difference in a FOG can be expressed by the
phase difference   2tc=, where  is the free
space wavelength of light. Today, FOGs have become
highly sensitive detectors measuring rotational motion
in navigation [4,5].
It is believed that the Sagnac effect exists only in
circular motion. However, we have discovered that any
moving path contributes to the total phase difference
between two counterpropagating light beams in the
loop. In a previous experiment using a fiber optic conveyor
(FOC), we showed our preliminary result that a segment
of linearly moving glass fiber contributes   4vL=c to the phase difference [6]. Here,

we generalize
our finding for the Sagnac effect with a more complete
study and a series of new experiments. Our experiments
include different types of motion and light paths with a
glass fiber and an air-core fiber [7]. In this study, we found
that in a light waveguide loop consisting of linearly and
circularly moving segments, any segment of the loop
contributes to the phase difference between two counterpropagating
light beams in the loop. The contribution is
proportional to a product of the moving velocity v and the
projection of the segment length l on the moving direction,
  4v  l=c. It is independent of the type of
motion and the refractive index of waveguides. The total
phase difference of the loop is   4Hl v  dl=c.
This general conclusion includes the Sagnac effect for
rotation as a special case. The finding also suggests a new
fiber optic linear motion sensor having nanoscale sensitivity,
which is much more sensitive than any existing
linear motion detectors. This linear motion sensor may be
applied to accelerometers in navigation and seismology.
Our experiments are different from the Fizeau-type
experiment [8],‘‘drag’’ experiment of a moving medium.
In the Fizeau-type experiment, there is relative motion
between the light path and the medium, water or glass.
The result of the Fizeau-type experiment is dependent on
the refractive index of the medium, and the drag coeffi-
cient is zero when the refractive index is 1. In our experiments,
as in the FOG, there is no relative motion between
the light path and the medium, glass fiber or air-core fiber.
The experimental system in our study consists of a fiber
optic loop, a FOG [9], and a mechanical conveyor, as
shown in Fig. 1(a). A single mode fiber loop with different
configurations was added to the FOG, which was calibrated
for the added length. The loop includes significant
portions of fiber segments that move linearly. The function
of the FOG in this experiment is to transmit and
receive the counterpropagating light beams and to detect
the phase differences between two light beams. Because
the FOG is not rotating in the experiment, the detected
phase differences are caused by the movement of the
added fiber optic loop.
An air-core fiber was used to verify that the phase
difference is independent of the refractive index and
various types of motion. The new photonic band gap fiber
[7] has a hollow air-guiding core for light with a wavelength
of 1310 nm. The fiber was used to construct a twowheel
FOC shown in Fig. 1(a) and a three-wheel FOC, not
shown. Shown in Fig. 1(b) are the detected phase differences
caused by the fiber motion with both configurations.
The length of the fiber loop is 4.1 m and the speeds of the
motion are from 0.001 91 to 0:211 m=s. Each phase difference
is an average of eight measurements. Thirteen
VOLUME 93, NUMBER 14 PHYSICA L R EVI EW L ET T ERS week ending
1 OCTOBER 2004
143901-1 0031-9007=04=93(14)=143901(3)$22.50  2004 The American Physical Society

143901-1
phase differences range from 0.000 246 to 0.0276 rad. The
maximum conveyor velocity error is 1.7%. The leastsquares
linear regression of the phase differences is
0:0323vL, which closely matches with   4vL=
c  0:0320vL with   1310 nm. It also matches the
result using a glass fiber [6]. Therefore, it is confirmed that
the contribution to the phase difference in a moving light
waveguide is independent of the refractive index of the
waveguide and independent of the loop configurations.
To study the relationship between the motion of the
fiber and the fiber orientation, we conducted an experiment
in which the fiber zigzags and has an angle  with
respect to the direction of fiber motion. Thus, for a fiber
segment having an actual length of l, its effective length
is l cos, which is a projection of the fiber onto the
motion direction. As shown in Fig. 2, our experiment
demonstrates that the effective length contributes the
phase difference, not the actual length; therefore, the
phase difference  is not 4vl=c, but 4vl cos=
c  4v  l=c, which is the dot product between two
vectors.
A further experiment was conducted to study the phase
difference when different segments of the loop moved at
different speeds. Figure 3(a) shows a fiber optic ‘‘parallelogram’’
where the top arm moves with the conveyor
and the bottom arm is stationary.While moving, the two
sidearms, being flexible, are kept the same shape so that
the phase differences in these two sidearms cancel each
other. There is no phase difference in the bottom stationary
arm. Therefore, the detected phase difference is
contributed solely by the motion of the top arm. The
experiment was conducted using a glass fiber and an
air-core fiber. The detected phase differences are shown
in Fig. 3(b). For the glass fiber configuration, the length of
the top arm is 1.455 m and there are 11 turns. The
measured phase differences range from 0.000 482 to
0.121 rad for speeds from 0.000 917 to 0:233 m=s. In
another configuration, the top arm is air-core fiber with
a length l of 5.23 m. The phase differences range from
0.000 301 to 0.0346 rad for speeds from 0.00186 to
0:207 m=s. The least-squares linear regression of the
phase differences is 0:0317vl, which agrees with   4vl=c  0:0320vl with   1310

nm.
According to our experiments, we can draw a conclusion
about the generalized Sagnac effect that in a moving
fiber loop or waveguide, a segment l with a velocity v
contributes   4v  l=c to the total phase difference
between two counterpropagating beams in the loop.
The contribution  is independent of the refractive
index of the waveguide, and the motion of the segment
FIG. 2 (color online). Phase differences of moving fiber segments
that have the same effective length and different actual
lengths. The effective length is 7.20 m and four actual lengths
are 8.31, 10.2, 14.4, and 27.8 m for   30, 45, 60, and 75,
respectively. The velocity is 0:091 m=s. Four phase differences
range from 0.0206 to 0.0215 rad, with standard deviations from
0.000 280 to 0.000 743 rad. In this experiment, 4vl cos=
c  0:032vl cos  0:0211 rad, which is represented by the
dashed line.
FIG. 1 (color online). Experiment for detecting the phase
difference of two counterpropagating light beams in a moving
fiber loop. (a) Experimental setup. The fiber loop is driven by
the conveyor at a velocity v. The conveyor has a length of 1.5 m
and can move from 0.001 to 0:25 m=s. The diameters of the
wheels are 0.3 m. The FOG consists of a 1310-nm superluminescent
light-emitting diode as the light source and a phase
difference detector that has an output rate of 1162.6 mVper rad.
(b) Phase differences of two counterpropagating beams in a
moving air-core fiber.
VOLUME 93, NUMBER 14 PHYSICA L R EVI EW L ET T ERS week ending
1 OCTOBER 2004
143901-2 143901-2
can be either linear or circular. Thus, for the entire loop,
the total phase difference between two counterpropagating
beams in the loop is
  4Il
v  dl=c:
This general conclusion includes the Sagnac effect of
rotation as a special case. In fact, the Sagnac result can
be derived from this general equation by assuming a
circular motion of the loop and using Stokes’s theorem,
  4Il
v  dl=c  4ZZAr  v  dA=c
 4ZZA
2k  dA=c  8A=c:
This generalization provides a design principle for a
new fiber optic linear motion sensor (FOLMS), which has
a high sensitivity and a high stability. The basic structure
of this sensor can be similar to that shown in Fig. 3(a).
The linear motion of the top arm of the sensor is detected
with a phase difference   4vNl=c. Because two
beams share the same optical path, the sensor is optically
stable. Just as a FOG detects the rotational motion of an
object, a FOLMS can detect the relative linear motion
between two objects fixed on the top and bottom arms of
the parallelogram. The optical technologies developed in
recent decades for the FOG can be utilized for the
FOLMS; therefore, the sensitivities and stability of the
FOLMS are comparable to that of the FOG. The sensitivity
of a FOG can be 107 rad of the phase difference
[5].With Nl  500 m and   106 m, a FOLMS can
detect a linear velocity of
v  c=4Nl  4:8 nm=s
which is a nanoscale velocity.
This nanoscale sensitivity linear motion sensor can
detect the very small relative motion appearing in an
accelerometer, which is important in navigation and seismology.
The common design of an accelerometer is a
spring-mass system. Improving the sensitivity of an accelerometer
requires improving the sensitivity of detecting
the linear movement of the mass relative to the base.
Utilizing a FOLMS to detect the relative motion between
the mass and the base will greatly increase the sensitivity
of the accelerometer. It can be foreseen that an accelerometer
using the FOLMS combined with the fiber optic
gyroscope may be beneficial for navigation because both
use the same technology and both are very stable
optically.
We thank Dean Langley for useful discussions and
help. We thank Robert Moeller of the Naval Research
Laboratory for technical assistance and NRL for the
loan of the FOG. The air-core fiber was purchased from
Crystal Fiber, Denmark.
[1] G. Sagnac, C. R. Acad. Sci. Paris 157, 708 (1913).
[2] V. Vali and R. Shorthill, Appl. Opt. 16, 290 (1977).
[3] W. Leeb, G. Schiffner, and E. Scheiterer, Appl. Opt. 18,
1293 (1979).
[4] H. Lefevre, The Fiber-Optic Gyroscope (Artech House,
Boston, 1993).
[5] W. K. Burns, Optical Fiber Rotation Sensing (Academic
Press, Boston, 1994).
[6] R.Wang, Y. Zheng, A. Yao, and D. Langley, Phys. Lett. A
312, 7 (2003).
[7] R. F. Cregan et al., Science 228, 1537 (1999).
[8] H. L. Fizeau, C. R. Acad. Sci. Paris 33, 349 (1851).
[9] R. P. Moeller et al., in Fiber Optical and Laser Sensors
XI, edited by R. P. DePaula, SPIE ProceedingsVol. 2070
(SPIE–The International Society for Optical
Engineering, Boston, MA, 1993), p. 255.
FIG. 3 (color online). Experiment for studying the phase
difference when different segments of the loop move at different
speeds. (a) Experimental setup. The light from a source is
split into two beams that counterpropagate in the fiber which is
wound onto a parallelogram. The bottom arm is fixed while the
top arm is moving. The phase difference can be enhanced by
multiple turns of the fiber on the parallelogram. The coupler,
source, and detector are replaced by the FOG in the experiment.
(b) Phase differences caused by the linear motion of the top
arm of the fiber optic loop.
VOLUME 93, NUMBER 14 PHYSICA L R EVI EW L ET T ERS week ending
1 OCTOBER 2004
143901-3 143901-3

 

[楼主]  [7楼]  作者:yanghx  发表时间: 2005/04/21 22:44 

也算是一种思潮吧?光点位移效应?

其实sagnac效应只是“光点位移效应”的一种情况,
在直角坐标系内,
从激光的投射方向看,还有两个方向的“光点位移效应”,
以前我们称之为“光点横向偏移实验”, (纵向就是被王睿永的实验证明的了)

还有圆柱坐标系内,
激光沿圆柱周长方向(切向)的“光点位移”就是标准的sagnac效应了,
而激光投射还可以沿圆柱的径向、竖向投射,
这就又有两种“光点位移效应”了,
希望看到至少其中的一种被命名为“黄德民效应”?呵呵,

反正是能者多劳,就你算是比较有条件的了,
我们只能给你提供点思路和理论上的探讨,

 

 [8楼]  作者:yuajin  发表时间: 2005/04/22 06:15 

回复:还有我OK?yuajin@sina.com
王睿永的《一般性的sagnac效应》:一个很不错的实验!
[楼主]  [9楼]  作者:yanghx  发表时间: 2005/04/22 11:20 

OK了
王睿永的《一般性的sagnac效应》:一个很不错的实验!
 [10楼]  作者:hudemi  发表时间: 2005/04/22 20:44 

在我提出的三类实验方案中,第一种与王先生的实验十分接近,比较的把握。第二种需要发散度很小的激光,第三种也有较大希望能成功
谢谢杨兄等人的支持和鼓励。
 [11楼]  作者:吴沂光  发表时间: 2005/04/23 10:38 

回复:谢谢!
王睿永的《一般性的sagnac效应》:一个很不错的实验!
[楼主]  [12楼]  作者:yanghx  发表时间: 2005/04/23 13:58 

创新就有风险,准备着失败、挨批吧,嘿嘿,
王睿永的《一般性的sagnac效应》:一个很不错的实验!
 [13楼]  作者:明学  发表时间: 2005/04/23 20:20 

回复:YANGHX

我们首先要弄清楚,所谓的光速不变是指在真空中的光速,

 SAGNAC实验只能证明光速在介质中的运动满足加利略变换。不能说明什么问题。

 相对论的问题不在这里!1



※※※※※※
明学达观
 [14楼]  作者:马国梁  发表时间: 2005/04/23 21:40 

黄先生,把您的几种新实验方案也给我寄一份来吧?
您知道我的信箱的:emgl@sohu.com
[楼主]  [15楼]  作者:yanghx  发表时间: 2005/04/24 00:10 

探讨着看吧?

主要是说明了接收器接收到“光子”的时间差
取决于光纤的直线运动的速度大小(直线匀速运动),
这就是光速的相对性呀?

也就是说“光子”相对接收器的速度是可变的,
如果光纤的运动速度很高,
就可以产生相对亚光速或相对超光速?
当然这个光速是相对运动的光接收器的,
不是相对地面旁观“第三者”的,
因为在“第三者”看来,由于光接收器的位置相对他是变化了,
有位移产生,所以光程是增加了,光传输时间也变了,
于是“第三者”计算出的光速还是c,
可是运动的光接收器(观察者)并不认为光纤的长度改变了,
就是说即使在一个封闭系统中,
用光纤陀螺就可以知道该系统是否在转动,
其根据就是封闭系统中的观测者观测到了光速的变化,
走过相同光纤长度的两束光在到达接收器时,出现了时间差,

虽然这个实验还不能判断出封闭系统是否运动,
但意思是一样的,即:
走过相同光纤长度的两束光在到达接收器时,出现了时间差,

这与光传输是在介质还是在真空中的关系不大?


[楼主]  [16楼]  作者:yanghx  发表时间: 2005/04/24 09:37 

进一步的引申:直光纤段内的sagnac效应

由此可以进一步的引申出:
在一个封闭系统中,
如果可以精确的测量直光纤段内的单程光速,
就可以通过这个实验知道该封闭系统是否运动,
因为在这个直光纤段内同样存在着sagnac效应,
这就最终直接质疑了相对论的两个基本原理?

这显然不是介质中光速的问题吧?

 [17楼]  作者:明学  发表时间: 2005/04/24 09:40 

回复:YANGHX

当然是有关系的,如果你将真空当成是介质的话,做同样的实验,真空不动,但是光钎是动的。



※※※※※※
明学达观
 [18楼]  作者:明学  发表时间: 2005/04/24 09:42 

回复:YANGHX

你做不到的,你自己仔细想一想。



※※※※※※
明学达观
 [19楼]  作者:明学  发表时间: 2005/04/24 09:46 

回复:YANGHX

原因有两个:

1:相对于观察者或者测量仪器,光钎确实是动了。

2:光速决定于介质的本征性质,相对于观察者,光迁的运动必须叠加上去。



※※※※※※
明学达观
 [20楼]  作者:明学  发表时间: 2005/04/24 09:48 

回复:YANGHX
如果将真空看成是介质的话,你就做不到上述环境,因为你不可能使真空动起来

※※※※※※
明学达观
 [21楼]  作者:马国梁  发表时间: 2005/04/24 17:27 

赶快征求一下鄙人的意见!给你检验一下。
王睿永的《一般性的sagnac效应》:一个很不错的实验!
 [22楼]  作者:马国梁  发表时间: 2005/04/24 17:27 

赶快征求一下鄙人的意见!给你检验一下。
王睿永的《一般性的sagnac效应》:一个很不错的实验!
 [23楼]  作者:hudemi  发表时间: 2005/04/25 12:45 

邮件已发出,请查收,望提宝贵意见!
王睿永的《一般性的sagnac效应》:一个很不错的实验!

精彩推荐>>

  简捷回复 [点此进入编辑器回帖页]  文明上网 理性发言
 推荐到西陆名言:
签  名:
作  者:
密  码:
游客来访 
注册用户 提 交
西陆网(www.xilu.com )版权所有 点击拥有西陆免费论坛  联系西陆小精灵

0.21538591384888