财经社区女性社区汽车社区军事社区文学社区社会社区娱乐社区游戏社区个人空间
上一主题:julia123的物理观点有代表性 下一主题:给中科院理论物理研究所---李淼 ...
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度
[楼主] 作者:宇观系统论  发表时间:2004/07/18 10:59
点击:316次

由于GP-B实验对挑战相对论具有重大的意义,从现在起,我计划将所有的进展资料转发到这一论坛来,供需要准确资料的同行了解其进展并参考。由于时间原因,我不能将这些资料翻译成中文,只解释关键部分。需要所有资料的同行只有自己想办法解读了。

GP-B进入了初始化和轨道校验的最后阶段。4个陀螺都已经悬浮好,2、4号已经加速到科学观测所需的速度。望远镜(意味着陀螺)已经定位到远方类星体IM Pegasi。昨天(16日)2号陀螺加速到87Hz(80Hz就已经达到实测要求)。

(后面部分是工程的简况)

 

At just under 3 months in orbit, Gravity Probe B is nearing the end of the Initialization and Orbit Checkout (IOC) phase of the mission. The spacecraft remains in excellent health, and all subsystems are continuing to perform well. All four gyros are digitally suspended, with gyros #2 and #4 spinning at science mission speed—greater than 80Hz (4,800 rpm)—and gyros #1 and #3 spinning at approximately 1.5 Hz (90 rpm), ready for full-speed spin-up. The updated drag-free thruster control software that was uploaded to the spacecraft three weeks ago to optimize performance of the Attitude and Translation Control system (ATC) is continuing to perform nominally. The spacecraft’s roll rate is 0.52 rpm, and the science telescope is being re-locked onto the guide star, IM Pegasi, following the full-speed spin-up of gyro #2 yesterday.

    > >
  • This past Tuesday, July 13th, Gravity Probe B achieved a major milestone with the successful spin-up of gyro #4 to a science-ready speed of 105.8 Hz (6,348 rpm). Second to the launch, the full-speed spin-up of the gyros has been the next most long-awaited event in the history of GP-B. Members of the team were very attentive at their stations in the Mission Operations Center (MOC) here at Stanford for 3 hours and broke into applause when the final announcement boomed over the MOC intercom that the gyro #4 full spin-up had been completed successfully. Yesterday, July 16th, gyro #2 underwent the same spin-up procedure, reaching a final spin rate of 87 Hz (5,220 rpm). Spinning up the gyros to science-ready speed is a complex and dynamic operation that exercises the full capabilities of the Gyro Suspension System (GSS) and requires a high level of concentration and coordination on the part of the GP-B Team. Following is an overview of the process.
  • First, commands are sent to the GSS to move the gyro rotor (sphere) very close to the spin-up channel (about 1/100th of the edge of a sheet of paper) in one half of the gyro’s housing. > > Ultra-pure (99.99999%) helium gas is streamed from the Gas Management Assembly (GMA), mounted in a bay on the spacecraft frame, through tubing that enters the “top hat” (the thermal interface at the top of the probe) and travels down to the gyro housings in the Science Instrument Assembly (SIA) at the bottom of the probe. As the helium gas descends into the probe, which is at a temperature of approximately 1.8 Kelvin, the gas cools down from 273 Kelvin to around 12 Kelvin.
  • Before entering the spin-up channel in one of the gyro housings, the gas is passed through a combination filter/heater. The filter, which is made of sintered titanium, removes any impurities that may have been imparted to the helium on its journey into the probe. The heater enables the helium to be warmed slightly, which increases its adhesion to the ultra-smooth surface of the gyro rotor. The filtered and warmed helium then passes through the spin-up channel in one half of the gyro housing, and most of the gas evacuates into space through an exhaust system. > However, some of the helium leaks into the housings of the other gyros, causing their spin rates to decrease up to 20% over a full spin-up period of 2-3 hours.
  • For this reason, the order in which the gyros are spun up is very important. Earlier in the IOC phase, the 3 Hz (180 rpm) spin-up provided information on the helium leakage rate of each gyro. Gyro #4, which had the highest leakage rate, was spun-up to full speed first, so that helium leaked from its spin-up would not affect other gyros that were already at science mission speed. The remaining gyros are then spun-up in decreasing order of their helium leakage rates—gyro #2, gyro #1, and finally, gyro #3.
  • Each full-speed spin-up takes most of a day. In the morning, helium gas is flowed over the gyro for 90 seconds, and tests are run to ensure that the helium leakage rate for that gyro corresponds to previous measurements. If everything checks out, the full-speed spin-up, in which helium gas is flowed over the rotors for 2-3 hours, commences early in the afternoon. The GP-B team controls the spin-up process by sending commands from the Mission Operations Center (MOC) here at Stanford to the spacecraft in real-time. For example, they send commands to open or close the GMA valves to flow helium through the gyro’s spin-up channel. They also control the amount of heat applied to the gas before it enters the gyro spin-up channel, and they control opening and closing of exhaust valves. Real-time telemetry provides immediate feedback on the progress of the spin-up so that various parameters can be adjusted as necessary. >
  • The successful spin-up of gyro #4 to full speed enabled us to spin-up gyro #2. Gyro #2 topped out at 87 Hz (5,220 rpm), which is only slightly above the minimum spin rate of 80 Hz (4,800 rpm) required for the science experiment. Also, the helium gas leakage from the Gyro 2 spin-up slowed gyro #4 down to 91Hz (5,460 rpm). We are taking some time to evaluate the data from the first two spin-up procedures and to perform some ground-based tests before spinning up gyros #1 and #3 to full speed.
  • Meanwhile, we are fine-tuning the drag-free software used by the Attitude and Translation Control system (ATC) to optimize its performance at the current and final spacecraft roll rate of 0.52 rpm. For part of each orbit, the spacecraft passes behind the Earth, causing the telescope to lose visual contact with the guide star. During this “eclipse” period, two standard external rate gyroscopes, plus the star trackers on either side of the spacecraft, enable the ATC to keep the spacecraft/telescope pointed towards the guide star. When the spacecraft emerges over the North Pole and the guide star becomes visible again, the telescope must be re-locked onto it. This re-locking has been taking up to 15 minutes, and the fine-tuning will speed up this process considerably.


※※※※※※
hgy
本帖地址:http://club.xilu.com/hongbin/msgview-950451-51027.html[复制地址]
上一主题:julia123的物理观点有代表性 下一主题:给中科院理论物理研究所---李淼 ...
 [2楼]  作者:qapin  发表时间: 2004/07/18 21:26 

关于1980年陈绍光在《科学通报》23期1067-1070页预言天王星磁场,1986年被旅行者2号飞船实测证实。
25年前"空间非各向同性使自转物体产生磁场"经验理论公式.与现在陈老师理论有紧密联系.可以查阅参考,更好的理解他的磁场起源问题.
 [3楼]  作者:qapin  发表时间: 2004/07/18 22:10 

陈老师从理论彻底否定爱因斯坦的时空弯曲观点,同时推翻了大爆炸宇宙论.谁相信呢?

谁引爆了宇宙

引力起源与引力红移

陈绍光著

 

目彔

绪论                                               9-20

第1章    引力的起源                               21-49

1.1    弱作用真空极化效应                          21

1.2    弱作用真空极化压力公式                      25

1.3    量子场论导出广义相对论度规                  39

1.4    弱作用真空极化压力就是引力                  46

1.5    引力与强、弱、电磁力的大统一                49

第2章   量子引力效应                             52-72

2.1   引力作用下能量不守恒与时间箭头               52

2.2   引力的屏蔽效应                               57

2.3   引力的速度依赖                               68

2.4   引力的温度效应                               71

第3章   途中引力红移                             73-103

3.1   引力红移的可观测量                           73

3.2   量子场论导出途中引力红移                     77

3.3   广义相对论导出途中引力红移                   86

3.4               途中红移预言与光的偏折和雷达回波时延的预言

相洽                                         96

3.5   哈勃红移正是途中引力红移                     98

第4章   爱因斯坦的失误与宇宙膨胀                104-115

4.1   牛顿定律的引力红移                          104

4.2   度规时间分量的引力红移                      106

4.3   等效原理的引力红移                          109

4.4   爱因斯坦的失误导致宇宙膨胀假说              111

第5章   途中引力红移的实验观测检验              116-141

5.1   雷达回波时延实验佐证途中红移                116

5.2   光的偏折观测结果与途中红移相洽              118

5.3   实验室γ射线红移实验结果已证实途中红移      121

5.4   飞行器的引力红移实验                        127

5.5   ‘动摇’光速保恒原理的新红移                128

5.6   检验量子引力新预言的实验设计                138

第6章   真实的宇宙                              142-166

6.1   哈勃定律与红移曲线的弥散性                  142

6.2   反常红移与丢失质量                          143

6.3   类星体之谜                                  145

6.4   微波背景辐射                                148

6.5   氦丰度与宇宙年龄                            154

6.6   光度佯谬与引力佯谬                          158

6.7   宇宙学原理                                  161

6.8   天外有天的局域化宇宙                        163

                                           167-168

Who Exploded the Cosmos

Origin of Gravitation and Gravitational Redshift    

by Chen Shao-Guang

Catalogue                                      169-171

Abstract                                       172-216

 .

 [4楼]  作者:和满  发表时间: 2004/07/18 22:23 

“推翻大爆炸”我现在就100%相信,“大爆炸宇宙论”本来就是闹着玩的。“否定空间弯曲”我要正确理解陈老师理论之后再判断。
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度
 [5楼]  作者:qapin  发表时间: 2004/07/18 23:06 

回复:可有人认为大爆炸宇宙论是爱因斯坦方程的解(膨胀或收缩)
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度
 [6楼]  作者:和满  发表时间: 2004/07/18 23:14 

可以这样理解,但爱因斯坦场方程存在问题,并不一定“弯曲空间”错。

我倾向“平直空间”,但我拿不出证据。

另外,广相是“非量子化”的理论,这注定其不能做基础理论。

 [7楼]  作者:qapin  发表时间: 2004/07/19 00:16 

物质的量正是惯性质量(动量变化难易的度量)又是引力质量(引力大小的度量)。由此公式又推导出了广义相对论的施瓦兹希尔德度规和爱因斯坦方程,广义相对论就成了量子引力理论的唯象的宏观表述,从而度规表示的“时空弯曲”只是平直时空中[[光子真实的动量-能量变化的虚拟的等效描述方式,而不是真的时空弯了]]。已有理论能解释的引力现象量子引力公式都能解释而且更易数学求解,其深远意义是使连续场和非连续场两个理论体系实现了对接和同构型的统一。通俗的说广义相对论从纯数学虚拟角度看.陈理论包容了它.

 [8楼]  作者:qapin  发表时间: 2004/07/19 00:43 

回复:问题出在宇宙学原理假设:[(1)宇宙物质静止的分布 (2)宇宙物质均匀的分布]在坐标系中.
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度
 [9楼]  作者:和满  发表时间: 2004/07/19 10:45 

我一直认为“宇宙学”不是“科学学科”?

宇宙学与天文学不一样。

宇宙学用“有限的认识”,对“无限存在”进行推导。违反基本逻辑原则。

而且结论都是不可实验检验的。违反基本实证原则。

那都是闹者玩的,最多能当有趣的习题集。

 [10楼]  作者:qapin  发表时间: 2004/07/20 18:06 

回复:方程没有问题

6.7  宇宙学原理

天文观察发现了正在由氢星云逐渐形成着的星系,其年龄远小于宇宙大爆炸学说预言的星系形成的年龄,这对大爆炸学说是一个严峻的挑战。不久前,美国、欧盟和日本多国科学家由哈勃空间望远镜的观测资料发现存在红移率 z12.5的天体,并推算它离地球的距离为2.6×1010光年,这意味着该天体处在大爆炸宇宙论所说的宇宙之外约1.2×1010光年,或者说该天体早在宇宙诞生之前就已经存在了1.2×1010年。这对宇宙大爆炸学说更是一个有力的打击。大爆炸宇宙论与众多的观测事实相矛盾使本人不得不怀疑它的理论基础——宇宙学原理是否有问题。

宇宙学原理是假设宇宙物质静止均匀地分布在坐标系中,在这个前提下,由爱因斯坦方程可得出这个坐标系是膨胀或收缩的,从而宇宙物质随坐标系(或坐标系随物质)膨胀或收缩。对宇宙物质的均匀分布过去就有人怀疑,因为观测到的银河系和大量的星系物质并不均匀分布。宇宙膨胀论的维护者的回答是:观测到的只是宇宙的局部,在更大的宇观范围内宇宙物质是均匀分布的。若宇观范围是1013光年,可是我们只观测到1010光年的范围,那么宇宙学原理也许是正确的,因为我们不可能用事实来反驳。但是大爆炸宇宙论认为宇宙起始于大爆炸,现在的年龄为1.4×1010年,宇宙最大的半径只有1.4×1010光年。由于哈勃望远镜的升空,我们观测到的范围现在已经达到了1.4×1010光年以上。视野宽了则发现了更大范围内的星系成团分布,还有许多星系团组成超团,更有些星系像长城一样排列成串,有的还构成指环状等等,宇宙物质均匀分布的假设明显不符合事实。

宇宙物质静止分布在坐标系中也不成立,如银河系有旋转运动,还有自行等无规则运动,物质对坐标系的初始动能不能够假设等于零。事实上,在宇宙的每个局部范围内,物质的动能与引力势能总是按流体力学维里定理(Virial theorem)相平衡。宇宙不稳定解(膨胀或收缩)的获得是基于一个极不合理的假设——宇宙物质是静止的。该假设只忽略掉动能,同样大小的引力势能却未忽略掉。本来宇宙中物质的动能与势能处于平衡中(至少观测到的星系都是如此),现在人为地取消掉动能,物质就无法平衡,因而才得到一个宇宙膨胀或收缩的解。宇宙学原理的假设中,物质静止和均匀分布两条都从没有任何观测事实的依据,可为何这个假设被提升成为如同光速保恒原理一样神圣的原理呢?可能是人们只注意由这个假设推出的宇宙膨胀的结论,而忽视了该假设有没有依据和合不合理。

根据维里定理,物质的动能与引力势能总是自动地达到稳定的动态平衡。以我们比较熟悉的太阳系的运动为例,现在太阳系自动达到了动态平衡是因为既有太阳引力势能又有行星的动能。如果我们也作一个类似于宇宙学原理的假设,认为太阳系中物质是静止均匀分布的,则将得到一个太阳系将膨胀或收缩的解。由于太阳系的物质密度远大于作为或膨胀或收缩之分界线的临界密度,太阳系选择了收缩的解,使得所有行星卫星将落向太阳。

宇宙学原理中的静止分布的条件不成立,从爱因斯坦方程就得不到宇宙膨胀的解,再加上均匀分布的条件也不成立,宇宙膨胀的解更无法从爱因斯坦方程导出,由此可见,宇宙膨胀并不是广义相对论的推论。

 [11楼]  作者:qapin  发表时间: 2004/07/20 18:10 

回复:英雄所见说若相同
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度
 [12楼]  作者:qapin  发表时间: 2004/07/20 18:10 

回复:英雄所见说若相同
引力探测器上一周的进展:16日2、4号陀螺已经加速到观测速度

精彩推荐>>

  简捷回复 [点此进入编辑器回帖页]  文明上网 理性发言
 推荐到西陆名言:
签  名:
作  者:
密  码:
游客来访 
注册用户 提 交
西陆网(www.xilu.com )版权所有 点击拥有西陆免费论坛  联系西陆小精灵

0.20484399795532