|
波动方程t*=t-x/c 若将波动方程改为t*=(t-x/c) sqrt((c+v)/(c-v),并设t'=t sqrt((c+v)/(c-v))或t'=(t-vx/c^)/sqrt(1-v^/c^),x'=x sqrt((c+v)/(c-v))或x'=(x-vt)/sqrt(1-v^/c^),则有t*=t'-x'/c,即t-x/c=t'-x'/c不成立吗? |
|
波动方程t*=t-x/c 若将波动方程改为t*=(t-x/c) sqrt((c+v)/(c-v),并设t'=t sqrt((c+v)/(c-v))或t'=(t-vx/c^)/sqrt(1-v^/c^),x'=x sqrt((c+v)/(c-v))或x'=(x-vt)/sqrt(1-v^/c^),则有t*=t'-x'/c,即t-x/c=t'-x'/c不成立吗? |