|
2)21世纪维尔切克说,量子维度上的运动所带来的变化不是位移,这里没有距离的概念。而它就是自旋的变化。这种"超光速平移",将给定内在自旋的粒子变成不同的粒子。这是用对称概念对自旋作的语境分析,自旋、自转、转动的语义学定义是: (1)自旋:在转轴或转点两边存在同时对称的动点,且轨迹是重叠的圆圈并能同时组织起旋转面的旋转。如地球的自转和地球的磁场北极出南极进的磁力线转动。 (2)自转:在转轴或转点的两边可以有或没有同时对称的动点,但其轨迹都不是重叠的圆圈也不能同时组织起旋转面的旋转。如转轴偏离沿垂线的地陀螺或廻转仪,一端或中点不动,另一端或两端作圆圈运动的进动,以及吊着的物体一端不动,另一端连同整体作圆锥面转动。 (3)转动:可以有或没有转轴或转点,没有同时存在对称的动点,也不能同时组织起旋转面,但动点轨迹是封闭的曲线的旋转。如地球绕太阳作公转运动。 3)我国最先做出拓扑量子三旋动画视频是电子计算机专家邱嘉文先生。不信,你在电脑上打出"三旋动画"汉字,上网用"百度搜索",就能找到"三旋动画集"的视频条目,点击或转播在电视荧屏上,就可以看到三旋动画视频。 做这个视频的邱嘉文先生,是中国农业大学电力系统及其自动化硕士研究生毕业。目前是广东珠海威瀚科技发展有限公司副总经理,他是新中国通过三旋理论熏陶培养起来的第一个企业总经理。三旋动画视频与弦论、拓扑量子联系,还可以是从能量函数处理纽结不变式的角度推广。其道理是:一个物体作平动,取其一标记点的轨迹,可以看成一条流线,能与一条未打结的绳线对应;自旋一周则与未打结的绳圈结应。用这种思想处理类圈体三旋的62种自旋状态,单动态是未打结的环或封闭线的纽结结构;双动态和多动态是不只一个环的纽结结构。如此用二维图(平面图)和琼斯多项式类似的纽结不变式描述,可将某些场的能相图变为形相图来计算,也能将形相图改为对能相的计算。因此三旋的渗透能更好地体现其真实的物理意义。 5、生物全息律是开创我国科学未来的先声,是今天的尽情应用。即使从首届全国生物全息律学术讨论会第一天开始就有争论,而且张颖清先生已经离我们而去,但真理是越辩越明----"部分与整体相似"不管是生物基因绕组,还是物理的量子纠缠,最终通向的极小子流形的拓扑。而有拓扑量子就有拓扑量子场论。这类量子场论开始于20世纪70年代施瓦茨的阿贝尔的陈-塞黑斯场论研究。80年代末在阿蒂亚>启发下,弦论学家威滕发展了三个拓扑量子场论研究:一个就是非阿贝尔的陈-塞黑斯场论;第二个由超对称杨-米尔斯场论扭变得到;第三个由超对称西格玛模型扭变得到。进入21世纪,威滕等人又研究了具有更多超对称的杨-米尔斯场论的扭变,并将数学中的几何朗兰兹对偶解释为量子场论中的强弱对偶。威滕等人进一步发现,西格玛模型,陈-塞黑斯场论,以及超对称杨-米尔斯场论之间有千丝万缕的联系,它们都可以包含在弦论或者M-理论中。这类量子拓扑学有三个主题:a、量子群;b、三维拓扑场论;c、二维共形场论。 1)用三旋动画视频联系的拓扑性质,可揭示传统的拓扑量子场论任意子的量子计算机原理中的纰漏。因为体旋实际比面旋复杂,而这一点却让量子计算机原理研究的专家所忽视,例如Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图时,对量子位不动的几种陀螺旋转,就分辨不清,明显的错误是把陀螺绕Y轴的体旋称为"进动",这是不确切的。 2)三旋动画拓扑量子视频联系崔琦分数电荷量子霍尔效应研究,三旋动画可以直接观察到类似具有分数电荷和分数统计的粒子,它们在时空中的演变,提供了理解量子计算的快车道。如三旋拓扑序导致的基态简并、分数电荷和分数统计,以及相关的辫子群代数联系对应的量子不变量纽结、边缘态隧穿、输运等测量,提供参考。 3)拓扑量子的纠错研究,如中国科技大学微尺度物质科学国家实验室潘建伟及陈宇翱、刘乃乐等教授,成功制造出并观测到了具有拓扑性质的八光子簇态,并将此簇态作为量子计算的核心资源,实现了拓扑量子纠错。 4)拓扑量子的薄膜研究,上海交大低维物理和界面工程实验室贾金锋、钱冬、刘灿华、高春雷等教授,已经制备出最适合探测和操纵Majorana费米子的人工薄膜系统。 5)量子自旋霍尔拓扑绝缘体的研究,拓扑量子计算在美国得到极大的重视,微软公司在其加州的研究所中网罗了大量理论人才,从事拓扑量子计算方面的开创性研究,并每年投入数百万美元直接支持加州理工学院、芝加哥、哥伦比亚、哈佛等大学相关的分数量子霍耳效应的实验研究。 6)我国拓扑量子计算研讨会活跃,如早在2011年5月21至22日,由上海微系统所蒋寻涯研究员、上海交大刘荧教授和浙大万歆教授联合牵头开的"普陀论拓扑"专题研讨会;2011年11月25日至27日,由理论物理国家重点实验室资助的"理论物理前沿研讨会-凝聚态物理中的拓扑物态和量子计算研究专题研讨",其目的就是要推进我国在拓扑量子物态与拓扑量子计算、拓扑绝缘体与相关系统、拓扑超导体等研究。 7)拓扑量子在交叉科学中的应用,如非相对论物理学中的拓扑量子数,特点是对系统中的缺陷不敏感,因此数在物理量的精确测量中变得非常重要,并提供了最好的电压和电阻的标准。在有机化学中,包括基团极化效应参数和拓扑立体效应指数的计算;有机分子拓扑量子键连接矩阵的构造以及分子结构特征参数的提取,矩阵特征根、拓扑量子轨道能级、原子电荷、化学键的键级等参数的计算;应用上述分子结构参数,对烷烃、单取代烷烃、链状烯烃、含C=0键和N=0键有机化合物、芳香烃和极性芳香化合物等各类有机物的热力学性能、化学反应性能、光学性能、色谱性能、价电子能量、酸性和生物活性进行的相关研究,等等,也体现和联系着对复兴全息生物学的深化。 参考文献
[2]王德奎,三旋理论初探,四川科学技术出版社,2002年5月; [3]孔少峰、王德奎,求衡论---庞加莱猜想应用,四川科学技术出版社,2007年9月; [4]王德奎,解读《时间简史》,天津古籍出版社,2003年9月;
[6]刘月生、王德奎等,"信息范型与观控相对界"研究专集,河池学院学报2008年增刊第一期,2008年5月; [7]陈超,量子引力研究简史,环球科学,2012年第7期;
[9] [美] 曹天予,《20世纪场论的概念发展》,上海科技教育出版社,吴新忠等译,2008年12月。 |