X’+2X/r=Y’/2, (1)
3Y’+2fY=2X’ (2)
f(r)的形式:
f(r)=1/( r-2A) -1/r, (3)
其解析解为(广义)超几何函数(hypergeom):
{Y(r) = -1/2*(-8*_C1*r^(3^(1/2))*hypergeom([1+3^(1/2), 3+3^(1/2)],[2+2*3^(1/2)],1/2*r/A)*3^(1/2)*A+44*_C2*hypergeom([-3^(1/2), 2-3^(1/2)],[1-2*3^(1/2)],1/2*r/A)*r^(-1-3^(1/2))*A^2*3^(1/2)-18*_C1*r^(3^(1/2))*hypergeom([1+3^(1/2), 3+3^(1/2)],[2+2*3^(1/2)],1/2*r/A)*A-44*_C1*hypergeom([3^(1/2), 2+3^(1/2)],[1+2*3^(1/2)],1/2*r/A)*r^(3^(1/2)-1)*A^2*3^(1/2)-18*_C2*hypergeom([-3^(1/2)+1, 3-3^(1/2)],[2-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2))*A+4*_C1*r^(1+3^(1/2))*hypergeom([1+3^(1/2), 3+3^(1/2)],[2+2*3^(1/2)],1/2*r/A)*3^(1/2)+9*_C1*r^(1+3^(1/2))*hypergeom([1+3^(1/2), 3+3^(1/2)],[2+2*3^(1/2)],1/2*r/A)+8*_C2*hypergeom([-3^(1/2)+1, 3-3^(1/2)],[2-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2))*3^(1/2)*A+9*_C2*hypergeom([-3^(1/2)+1, 3-3^(1/2)],[2-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2)+1)-4*_C2*hypergeom([-3^(1/2)+1, 3-3^(1/2)],[2-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2)+1)*3^(1/2)+22*_C1*hypergeom([3^(1/2), 2+3^(1/2)],[1+2*3^(1/2)],1/2*r/A)*r^(3^(1/2))*3^(1/2)*A+44*_C1*hypergeom([3^(1/2), 2+3^(1/2)],[1+2*3^(1/2)],1/2*r/A)*r^(3^(1/2))*A-22*_C2*hypergeom([-3^(1/2), 2-3^(1/2)],[1-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2))*3^(1/2)*A+44*_C2*hypergeom([-3^(1/2), 2-3^(1/2)],[1-2*3^(1/2)],1/2*r/A)*r^(-3^(1/2))*A-88*_C2*hypergeom([-3^(1/2), 2-3^(1/2)],[1-2*3^(1/2)],1/2*r/A)*r^(-1-3^(1/2))*A^2-88*_C1*hypergeom([3^(1/2), 2+3^(1/2)],[1+2*3^(1/2)],1/2*r/A)*r^(3^(1/2)-1)*A^2)/(1+2*3^(1/2))/A^2/(-1+2*3^(1/2)), X(r) = _C1*hypergeom([3^(1/2), 2+3^(1/2)],[1+2*3^(1/2)],1/2*r/A)*r^(3^(1/2)-1)+_C2*hypergeom([-3^(1/2), 2-3^(1/2)],[1-2*3^(1/2)],1/2*r/A)*r^(-1-3^(1/2))} |