最小作用量原理与物理之美1--导言March 1, 2008 - Eagle Fantasy爱因斯坦说过:"我想知道上帝是如何设计这个世界的。对这个或那个现象、这个或那个元素的谱我不感兴趣。我想知道的是他的思想,其他的都只是细节问题。"近代物理隐隐约约的表明,我们人类似乎已经接近于上帝的终极设计了,最小作用量原理、对称与守恒可能就是上帝设计世界的原则。最小作用量原理、对称与守恒不同于F=ma、F=GMm/r^2、F=kx、F=kQq/r^2这类的普通物理定律,他是物理定律的定律,是一切其他普通物理定律的基础。 最小作用量原理是一个令人神往的课题,费恩曼上高中时听到他的老师巴德给他讲的时候就被深深震撼了,我也是一样。当我第一次从费恩曼的书中看到这个原理时,真是有种无法言表的喜悦,好像是我窥见了上帝设计世界的图纸一般。后来我就如饥似渴的学习者有关引人入胜的最小作用量原理的知识,同时越来越被这伟大的原理所吸引。 最小作用量原理这个伟大的思想应该被优秀的中国学生所充分了解,可是据我所知我们班以前除我之外没有人听说过它,在我的积极推广之后才有一些人知道了这么个东西,而利用这个周六的一个交流机会我才把最小作用量原理讲给全班同学听了。从个人角度来说,我认为人活在世上不知道最小作用量原理是一大憾事;从民族的角度来说,一个民族不具备先进的物理思想是很难在科学上引领全世界的,也就是生产力的巨大飞跃总是先发生在外国,我们跟着学而已。古中国文化昌盛,可是却不具备完整科学的思想,看看古代的科技类的书才有多么点,而其中技术类和理论类的比值又是多么高。因此古中国的科技并没有什么突破,蒸汽机、发电机等革命性的发明就不属于中国。而西方从欧几里得、毕达哥拉斯开始就试图建立科学的理论体系,后来牛顿又为科学界作出了一个建立理论体系的表率。西方的科学重思想、重理论、重基础研究,等这些成熟了,技术的飞跃就指日可待了。因此物理思想是非常重要的,重要性远远超过知识本身,尤其是最小作用量原理这样深刻、神奇的物理思想,更应该被我们优秀的中国中学生所掌握。因此,我就在这里担当一个传播者的角色,把这一思想传播给本博客的读者们。 作用量这个概念还是比较抽象的,我不想一上来就给作用量下定义,这样会很难理解,我会在之后的几篇文章中由浅入深的介绍。主要思路如下: 最小作用量原理与物理之美2--自然中无处不在的极值March 2, 2008 - Eagle Fantasy 观察自然界的各种现象,会发现极值往往出现。知道这一点非常重要,在最小作用量被明确提出之前,人们已经研究了很多极值问题。我们先来看一些比较简单的极值问题,会对最小作用量原理有一个更深刻的认识,也能从中看出最小作用量原理的起源与历史。 物理定律都有两种表述形式:一种是普通的我们高中学的形式,用力、加速度、电场强度等概念描述的物理定律;另一种是极值的形式,在一个物理过程中某个量取得极值。这两种表述形式是等价的。 先看一个最简单的例子,如图,两个电阻R1、R2并联,输入的电流为I,求I1、I2是多少。 静电平衡也可以用两种方式来解释。为了得到电荷总是分布在导体的表面这个结论,我们一方面可以利用电荷之间互相排斥来说明;另一方面,我们可以利用导体的静电能最低来求出电荷的分布。 再来看一个例子。如图那样把一个铁链子的两端系在水平的棒上,铁链子会形成一个美妙的曲线(悬链线)。为了计算这条曲线的方程,我们可以用受力分析来做,但还有另一种方法,即铁链子的真实形状使得其重力势能最低。你无论怎么改变铁链子的形状,得到的重心总会比真实情况高。 水珠也很有代表性。如果在太空中忽略重力,那么水珠会成为球形--相同体积的所有立体图形中表面积最小的,在物理中我们说表面势能最小(表面张力会使液体有一个表面势能,其大小正比于液体表面积)。如果考虑重力,液体的形状会是怎样的呢?是哪一个量取最小值呢,重力势能还是表面势能?聪明的造物主选择了这么一个量:重力势能加上表面势能最低。重力尽可能的把重心往下拽,表面张力又尽可能的使液体保持球形,最后就形成了一个扁扁的类似椭球的形状(不考虑液体与地面之间的分子力)。 以上种种现象表明,造物主似乎是个精明的经济学家,他总是尽心设计物理定律使得"成本"最小。很久以前,人们认为这些极值问题仅仅是一些物理定律的偶然结果,可是随着理论的发展,人们似乎慢慢认识到极值才是宇宙中最本质的定律。在今天,物理学家们已经找到了一种以统一的形式和精确的数学去描述这些极值问题的原理--最小作用量原理。 最小作用量原理与物理之美3--费马原理March 9, 2008 - Eagle Fantasy 对于几何光学中的许许多多的定律,费马找到了一种统一的描述,现在被称为费马原理,被认为是最小作用量原理在几何光学中的特例,是最小作用量原理最早的成功例子。上一篇文章并没有真正写最小作用量原理,写的仅仅是一些简单的极值问题(千万不要认为那就是最小作用量原理),而本文与下一篇文章则将写最小作用量原理在几何光学与动力学的特例,并给出比较精确的数学公式(这是为了后面的横向比较和更深刻地理解最小作用量原理),对微积分头痛的人可以跳过公式只看文字。 费马原理是这么说的:过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。 大家可能还见过费马原理的另一种表述:过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。就是把光程换成时间t了,即: 有了费马原理,就有了全部几何光学,我们可以从费马原理出发退出所有的几何光学定理。这是费马原理的强大威力之一。 下面我要重点说一下费马原理如何简洁的证明圆锥曲线的光学性质。这里的圆锥曲线都被镀上了一层银,可以当镜子用。 至于费马原理为什么是对的,《费恩曼物理学讲义 第二卷》第19章给出了一个精彩阐述。他是这么说的:"要是他遵循一条需要不同时间的路径,则当它到达时就有不同相位。而在某一点上的总振幅等于光能到达的所有不同路径振幅贡献的总和。所有那些提供相位差异很大的路径将不会合成任何东西。但如果你能找出一整序列路径,他们都具有几乎相同的相位,则小小的贡献便将加在一起而在到达之处得到一个可观测的总振幅。因此,重要路径就成为许多能给出相同相位彼此靠近的路径。"而只有时间取极值的那条路径,才能保证路径有微小变化时时间保持不变(再次与导数类比,函数取极值的那个点,当x有微小变化Δx时,Δy=Δx*y'=0,其余的点Δy都是一个不为0的数)。因此,时间取极值的路径被叠加了,成为了实际路径,而其余的任何可能路径都被不同的相位给抵消没了。 这个甚至可以解释光的衍射现象。当我们用一个很细的狭缝来挡住一部分光时,时间不取极值的某些路径也因为有一部分光被挡住而不能很好的叠加为零,因此这种情况下光并不是总衍直线传播,而是产生了光可以绕到障碍物后面的的现象,即衍射现象。 我们已经看到了最小作用量原理在光学中的应用,它可以代替所有其他几何光学定律。下篇文章我将写最小作用量原理在力学中的特例,以及如何代替整个牛顿力学。 最小作用量原理与物理之美4--力学March 15, 2008 - Eagle Fantasy 就像最小作用量原理可以推导出所有几何光学定律一样,力学中也存在一个最小作用量原理的特例可以推导出整个牛顿力学。今天我们就来研究研究这个。 有这样一个事实:假定有一个质点在引力场中通过自由运动从某处移动至另一处--你把它抛出去,他就会上升又落下。如果画出x-t图(为了简化,只考虑一维的运动,设x轴是竖直的轴),那么运动图像是一条抛物线。你可以尝试着通过起点和终点画一些别的曲线,如果计算出经历整条路径期间动能减重力势能对时间的积分,你会发现所获得的数值比实际运动所获得的要大。如果我们设作用量S为 下面我想用基本的微积分变一个惊人的魔术:从最小作用量原理推导出牛顿第二定律F=ma! 先进行一些前期工作。首先把v换掉,根据v是x对t的导数得到 有了上面这些东西,我们开始对S进行运算。 好了,花了这么大的力气终于从最小作用量原理推导出了牛顿第二定律,从而基本上可以解决任何经典力学问题了。在《最小作用量原理与物理之美2--自然中无处不在的极值》中我举了重力势能最低、表面势能最低的例子,这其实就是作用量中动能那一项恒等于零的结果。需要注意的是,尽管我们总是叫最小作用量原理,实际上作用量不一定最小,它可以是极小值、极大值或者恒定值,重力势能最低实际上是作用量取极大值的情况(作用量中势能前有个负号)。 有了这个力学的最小作用量原理,我们只要把合适的V(x)带进去就可以得到各种各样的结果,很多东西就能被理解了。有人会说牛顿力学不是错的么,相对论更准确,从最小作用量原理推出的是不准确的结果,那么它本身也不会正确。我想说的是,原理本身没有错,主要是我们的推导没有考虑任何相对论效应,作用量本身也没有经过相对论的修正,但是严谨的表述是可以实现的。 最小作用量原理与物理之美5--构建整个世界March 16, 2008 - Eagle Fantasy 有人曾经问过我有没有一个公式可以描述整个世界,我的回答就是,可能会有,这个定律很可能就是最小作用量原理。《可怕的对称》生动地说道:整个宇宙的终极设计可以写到一张餐巾纸上,那一行紧凑的公式可以推导出所有物理定律。而那张餐巾纸上写的,其实就是作用量S的表达式。我们前面看到了S在几何光学中的特例,也看到了他在经典力学中的特例。终极设计的S中一些量为常数,就可以退化成各种各样的特例。在电磁学、热学、相对论、量子力学中,S也有各自的退化形式。而一旦终极设计的S中的所有项我们都弄清楚了,我们也就可以自豪地宣称我们理解宇宙了。可惜我们离这个梦想还差得很多。 当年20世纪初的时候,物理学大厦貌似被全部推翻了,似乎一切旧的理论都被新的理论所取代了。但是,"在如此多的废墟中间,还有什么东西屹立长存呢?最小作用量原理迄今未经触动,人们似乎相信他会比其他原理更久长。事实上,它是更加模糊,更加抽象。"庞加莱(Poincaré)(又被翻译成彭加勒)如是说。他还说道:"作为普遍的原理,最小作用量原理和守恒原理具有极高的价值,他们是在许多物理定律的陈述中寻求共同点时得到的,因此,他们仿佛代表着无数观察的精髓。"确实,很难想象最小作用量原理会被推翻,因为在最小作用量原理之外我们想不到还有什么更普遍而真实的原理了。现代物理已经全部构建在最小作用量原理之上,如果发现最小作用量原理不成立了,那可以说整个物理就没有什么对的东西了。 据说广义相对论就是建立在最小作用量的基础上的。定性的来说,光在弯曲的时空中走的仍是光程最短的路径,虽然在我们的眼中他并没有走直线,但是就像在篮球上划一条长度最短的线不是直线一样,光在弯曲时空中光程最短的路径并不是直线。因为我对广义相对论不熟悉,这里就不多说了。 费恩曼从高中起就对最小作用量原理非常痴迷,这也正奠定了他后来那么牛的基础。我们现在知道量子力学有三种等价表述:第一种是海森堡建立矩阵力学;第二种是薛定谔建立的波动力学;第三种则是费恩曼建立的基于作用量的量子力学--路径积分。费恩曼的这种表述发明的最晚,但是却是最简捷、最容易理解的一种表述(费恩曼自己是这么说的,到底是不是容易理解我不清楚)。 不仅仅是相对论、量子力学需要最小作用量原理,甚至同一场理论、弦论都直接把最小作用量原理作为其理论根基。可见,最小作用量原理已经是物理的灵魂了。 最小作用量原理与物理之美6--对称守恒与作用量March 22, 2008 - Eagle Fantasy 作用量的形式变幻多端,有人曾问过我我们是怎么知道作用量的表达式的。我想说的是,人类还没有一套完整的直接写出不同领域的作用量的方法,但是利用物理定律的对称性人们可以更容易得找到正确的作用量。物理定律的对称性和平常所说的几何对称还稍有不同,我来简单介绍一下吧。 对称的定义要点是这样的:如果有一样东西,我们可以对它做某种事情,在做完之后,这个东西看起来依旧和先前一样,那它就是对称的(见《费恩曼物理学讲义 第一卷》第52章)。比如我们熟悉的轴对称图形,我们把它经过镜面反射,它看起来和原来一样,因此它就是对称的。 作用量的对称性就是物理定律的对称性。对于物理定律来说,他们应该满足一些对称性。例如,F=ma这样的定律,我们在实验室做实验、在海底做实验、在外太空作实验都可以得到,不会在哪里发现F=2ma或者F=m^2*a。我们称这些物理定律满足空间平移对称。物理定律还满足时间平移对称,我们一百年以前做的实验发现的定律,现在再做还会发现同样的定律,一百年以后依然如此,物理定律的形式不随时间的流逝而改变,就称这些定律满足时间平移对称。还有一个比较普遍的对称称为空间旋转对称,即我们无论脸朝着哪个方向看到的物理定律都应该都是相同的。以上三个对称性,是适用于所有物理定律的,至今没有发现任何物理定律例外。 还有一些对称性只是被部分满足。比如镜像对称,把整个世界的左和右颠倒过来,在弱互相作用发生的时候世界就会改变,但在其他过程中世界还是原来的模样。还有电荷共轭对称,除了在弱互相作用发生时,我们把世界上所有的正物质与反物质对换,物理定律不变。(可见弱互相作用很特殊)。
下面我们列出几种常见的作用量对称与守恒之间的对应关系: 从上面的对应可以看出,时间平移对称应该是显然成立的,所以能量守恒牢不可破,所有物理定律没有例外;而宇称除了在弱互相作用下都守恒,正对应着除了在弱互相作用发生时把世界的左右颠倒之后作用量不变(至于宇称是什么,我也没有清楚的了解,反正是量子力学中的一个量,当年是杨振宁和李政道发现的宇称在弱互相作用下不守恒)。 最小作用量原理、对称、守恒,就这样联系在一起了:世界的运行满足最小作用量原理,作用量的形式受对称性的约束,对称性又与某个守恒定律等价。看来上帝的设计充满了美与和谐,一点也不像曾经想象的那样仅仅是一堆一堆唯象物理定律的堆砌。确实,造物主设计宇宙的时候写下的不可能是f=μN、F=kx这样的东西,直接写出作用量的表达式,再给出几个对称性,宇宙就变得稳定而有趣了。很多人抱怨物理很乱,可是我看到的只有物理之美! |