财经社区女性社区汽车社区军事社区文学社区社会社区娱乐社区游戏社区个人空间
上一主题:The Most Precise Test Yet of S... 下一主题:迈克尔孙实验有三种1是零结果(最...
请教jqsphy先生一个问题。
[楼主] 作者:逆子  发表时间:2002/05/31 22:24
点击:368次

相对论中的引力红移如何解释? 引力红移有两种可能,或者说有两种解释,相对论中所指的是那种红移,逆子有点不详,故请教。 1、引力对光源本身的作用,改变光源所发出的谱线产生变化。这个变化总是向红端移动,所以,称之为引力红移。 2、引力对光源本体不产生作用,而是对传播中的光产生作用,落入引力场中的光会变慢,所以,称之为引力红移。 3、引力不但可以改变光源的谱线,而且,还能使传播中的光产生作用,可使传播中的光变慢,所以说,引力红移是两种效应的组合结果。 逆子不知,相对论中的引力红移为哪般?你是如何理解引力红移的。

※※※※※※
逆子
本帖地址:http://club.xilu.com/hongbin/msgview-950451-16799.html[复制地址]
上一主题:The Most Precise Test Yet of S... 下一主题:迈克尔孙实验有三种1是零结果(最...
 [2楼]  作者:lqx8295  发表时间: 2002/06/01 08:34 

引力红移
假设有一光源放在地平面上,在高处有一接收器,接收到的光波波长会变长,向红端移动了一点,故称为紅移,由于光源是在引力场中才产生如此效应,故称引力紅移,如果光源在上,探测器在下,则产生紫移,与光速无关
 [3楼]  作者:jqsphy  发表时间: 2002/06/01 09:42 

回复: 是第三种对。不过后半句话不对,不是“组合结果”,因为这两种“效应”是同一个东西。
"引力使得时间变慢“与物体运动状态无关,与电磁波是不是在空间上运动了多少距离无关。无论是作为原子内的能级形式的能量(电磁波)还是发射之后的电磁波形式。 我知道您会向我问这个问题,因为上次您的帖子中就存在着这个问题。
 [4楼]  作者:jqsphy  发表时间: 2002/06/01 09:49 

在引力场中,一定是红移,不是紫移(这里有深刻背景,与引力场是张量场有关)。但紫移也是存在的,不过不重要(不具有根本意义)
在引力场中,一定是红移,不是紫移(这里有深刻背景,与引力场是张量场有关)。但紫移也是存在的,不过不重要(不具有根本意义)。如光波顺着引力场运动,紫移;逆着引力场运动,红移。但此时与异地引力势差有关,这种性质不具有根本性意义。 按这里,的确可以用到逆子的”组合结果”的说法。但它并不重要。我估计逆子是将它们混合起来理解了。
 [5楼]  作者:马国梁  发表时间: 2002/06/01 10:29 

沈先生的确很有才气,但是缺乏批判性和创造性,这样是不可能成就什么事业的!
 [6楼]  作者:jqsphy  发表时间: 2002/06/01 12:16 

回复:不要以为批判修改相对论就是创造性。这种事情历史上已经够多了,也都失败了。我们研究的是超对称,超引力和它的扩充,
不要以为批判修改相对论就是创造性。这种事情历史上已经够多了,也都失败了。我们研究的是超对称,超引力和它的扩充,这也是相对论的修改,但实际上是相对论的真正的发展。
 [7楼]  作者:jqsphy  发表时间: 2002/06/01 12:19 

这一篇后半部分是我的关于相对论的工作的总结(拓扑对偶荷与它的相对论动力学以及它的引力理论)
Hyperbolical geometric quantum phase and topological dual mass Jian Qi Shen1 and Hong Yi Zhu2 1. Zhejiang Institute of Modern Physics & Department of Physics of Zhejiang University, Hangzhou 310027, P. R. China 2.State Key Laboratory of Modern Optical Instrumentation, Center for Optical and Electromagnetic Research, College of Information Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China Both geometric phase1,2 of wave function in Quantum Mechanics and gravitomagnetic charge (topological dual charge of mass) in the general theory of relativity reveal Nature’s geometric or global properties. Differing from the dynamical phase, geometric phase is dependent only on the geometric nature of the pathway along which the quantum system evolves3,4. Here we show the existence of the hyperbolical geometric quantum phase that is different from the ordinary trigonometric geometric quantum phase5. Gravitomagnetic charge (dual mass) is the gravitational analogue of magnetic monopole in Electrodynamics6, but, as we will show here, it possesses more interesting and significant features, e.g., it may constitute the dual matter that has different gravitational properties compared with mass. In order to describe the space-time curvature due to the topological dual mass, we construct the dual Einstein’s tensor. Further investigation shows that gravitomagnetic potentials caused by dual mass are respectively analogous to the trigonometric and hyperbolic geometric phase. The study of the geometric phase and dual mass provides a valuable insight into the time evolution of quantum systems and the topological properties in General Relativity. Geometric phase exists in time-dependent quantum systems or systems whose Hamiltonian possesses evolution parameters7,8. As is well known, the dynamical phase of wave function in Quantum Mechanics depends on dynamical quantities such as energy, frequency, coupling coefficients and velocity of a particle or a quantum system, while the geometric phase is immediately independent of these physical quantities. When Berry found that the wave function would give rise to a non-integral phase (Berry’s phase) in quantum adiabatic process1, geometric phase attracts attentions of many physicists in various fields such as gravity theory9-10, differential geometry4, atomic and molecular physics11, nuclear physics12, quantum optics13-15, condensed matter physics16-19 and molecular-reaction chemistry11 as well. In many simple quantum systems such as an electron possessing intrinsic magnetic moment interacting with a time-dependent magnetic field (or a neutron spin interacting with the Earth’s rotation20), a photon propagating inside the curved optical fiber5,15, and the time-dependent Jaynes-Cummings model describing the interaction of the two-level atom with a radiation field21, geometric phase is often proportional to , which equals the solid angle subtended by the curved with respect to the origin of parameter space (Fig. 1). This, therefore, implies that geometric phase differs from dynamical phase and it involves global and topological properties of the time evolution of quantum systems. In addition to this trigonometric geometric phase, there exists the so-called hyperbolical geometric phase that is expressed by with the hyperbolical cosine in some time-dependent quantum systems, e.g., the two-level atomic system with electric dipole-dipole interaction and the harmonic-oscillator system22. It is verified that the generators of the Hamiltonians of these quantum systems form the Lie algebra. Further analysis indicates that quantum systems, which possess the non-compact Lie algebraic structure (whose group parameters can be taken to be infinity) will present the hyperbolical geometric phase, while quantum systems with compact Lie algebraic structure will give rise to the trigonometric geometric phase. Since Lorentz group in the special theory of relativity is also a non-compact group, this leads us to consider the topological properties associated with space-time. We take into account the gravitational analogue of magnetic charge6, i.e., gravitomagnetic charge that is the source of gravitomagnetic field just as the case that mass (gravitoelectric charge) is the source of gravitoelectric field (i. e., Newtonian gravitational field in the sense of weak-approximation). In this sense, gravitomagnetic charge is also termed dual mass. It should be noted that the concept of the ordinary mass is of no physical significance for the gravitomagnetic charge; it is of interest to investigate the relativistic dynamics and gravitational effects as well as geometric properties of this topological dual mass (should such exist). From the point of view of differential geometry, matter may be classified into two categories: gravitoelectric matter and gravitomagnetic matter. The former category possesses mass and constitutes the familiar physical world, while the latter possesses dual mass that would cause the non-analytical property of space-time metric. Einstein’s field equation of gravitation in general theory of relativity governs the couplings of gravitoelectric matter (which possesses mass) to gravity (space-time); accordingly, we should have a field equation governing the interaction of dual matter with gravity. By making use of the variational principle, the gravitational field equation of gravitomagnetic matter can be obtained where the dual Einstein’s tensor is denoted by with and being the four-dimensional Levi-Civita completely antisymmetric tensor and the Riemann curvature tensor that describes the space-time curvature, respectively. By exactly solving this field equation, one can show that the topological property of the solution can be illustrated in Figure 2. Such property is in analogy with that of the geometric quantum phase in the time-dependent spin-gravity coupling (i.e., the interaction between a spinning particle with gravitimagnetic field20) and other quantum adiabatic processes. The topological properties of gravitomagnetic charge (dual mass) may be shown in terms of the global features of geometric quantum phase (Table 1). It follows from Figure 2 that the expression of gravitomagnetic potential, , due to dual mass is exactly analogous to that of the trigonometric geometric phase. In the similar fashion, it is readily verified that the gravitomagnetic potential, , is similar to that of the hyperbolical geometric phase. This feature originates from the fact that Lorentz group is a non-compact group. Although there is no evidence for the existence of this topological dual mass at present, it is still essential to consider this topological or global phenomenon in General Relativity. It is believed that there would exist formation (or creation) mechanism of gravitomagnetic charge in the gravitational interaction, just as some prevalent theories provide the theoretical mechanism of existence of magnetic monopole in various gauge interactions23,24. Magnetic monopole in electrodynamics and gauge field theory has been discussed and sought after for decades, and the existence of the ’t Hooft-Polyakov monopole solution23 has spurred new interest of both theorists and experimentalists24-26. As the topological gravitomagnetic charge in the curved space-time, dual mass is believed to give rise to such interesting situation similar to that of magnetic monopole. If it is indeed present in universe, dual mass will also lead to significant consequences in astrophysics and cosmology. We emphasize that although the gravitomagnetic vector potential produced by the gravitomagnetic charge is the classical solution to the field equation, this kind of topological gravitomagnetic monopoles may arise not as fundamental entities in gravity theory, e.g., it will behave like a topological soliton. Gravitomagnetic charge has some interesting relativistic quantum gravitational effects20,27, e.g., the gravitational Meissner effect, which may serve as an interpretation of the smallness of the observed cosmological constant. In accordance with quantum field theory, vacuum possesses infinite zero-point energy density due to the vacuum quantum fluctuations; whereas according to Einstein’s theory of General Relativity, infinite vacuum energy density yields the divergent curvature of space-time, namely, the space-time of vacuum is extremely curved. Apparently it is in contradiction with the practical fact, since it follows from experimental observations that the space-time of vacuum is asymptotically flat. In the context of quantum field theory a cosmological constant corresponds to the energy density associated with the vacuum and then the divergent cosmological constant may result from the infinite energy density of vacuum quantum fluctuations. However, a diverse set of observations suggests that the universe possesses a nonzero but very small cosmological constant28-31. How to give a natural interpretation for the above paradox? Here, provided that vacuum matter is perfect fluid, which leads to the formal similarities between the weak-gravity equation in perfect fluid and the London’s electrodynamics of superconductivity, we suggest a potential explanation by using the canceling mechanism via gravitational Meissner effect: the gravitoelectric field (Newtonian field of gravity) produced by the gravitoelectric charge (mass) of the vacuum quantum fluctuations is exactly canceled by the gravitoelectric field due to the induced current of the gravitomagnetic charge of the vacuum quantum fluctuations; the gravitomagnetic field produced by the gravitomagnetic charge (dual mass) of the vacuum quantum fluctuations is exactly canceled by the gravitomagnetic field due to the induced current of the gravitoelectric charge (mass current) of the vacuum quantum fluctuations. Thus, at least in the framework of weak-field approximation, the extreme space-time curvature of vacuum caused by the large amount of the vacuum energy does not arise, and the gravitational effects of cosmological constant is eliminated by the contributions of the gravitomagnetic charge (dual mass). If gravitational Meissner effect is of really physical significance, then it is necessary to apply this effect to the early universe where quantum and inflationary cosmologies dominate the evolution of the universe. Study of the geometric property in quantum regimes is an interesting and valuable direction. Since it reveals the global and topological properties of evolution of quantum systems, geometric phase has many applications in various branches of physics, say, in the coupling of neutron spin to the Earth’s rotation27,32, a potential application may be suggested where the information on the Earth’s variations of rotating frequency will be obtained by measuring the geometric phase of the oppositely polarized neutrons through the neutron-gravity interferometer experiment20. The topological charge in curved space-time also deserves further investigation, since it reflects plentiful global or geometric properties hidden in the gravity theory. It is believed that both theoretical and experimental interest in this direction may enables people to understand the global phenomena of the physical world. 1. Berry, M.V. Quantal phase factor accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45-57 (1984). 2. Berry, M.V. Interpreting the anholonomy of coiled light. Nature 326, 277-278 (1987). 3. Robinson, L. An optical measurement of Berry’s phase. Science 234, 424-426 (1986). 4. Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167-2170 (1983). 5. Chiao, R. & Wu, Y. S. Manifestations of Berry’s phase for the photon. Phys. Rev. Lett. 57, 933-936 (1986). 6. Dirac, P. A. M. Quantized singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60-71 (1931). 7. Gao, X. C., Xu, J. B. & Qian, T. Z. Geometric phase and the generalized invariant formulation. Phys. Rev. A 44, 7016-7021 (1991). 8. Yang, L. G. & Yan, F. L. The area theorem of the Berry’s phase for the time-dependent externally driven system. Phys. Lett. A 265, 326-330 (2000). 9. Furtado, C. & Bezerra, V. B. Gravitational Berry’s quantum phase. Phys. Rev. D 62, 045003-(1-5) (2000). 10. Shen, J. Q., Zhu, H. Y. & Li, J. Exact solutions to the interaction between neutron spin and gravitation by using invariant theory. Acta Phys. Sini. 50, 1884-1887 (2001). 11. Wu, Y. S. M. & Kuppermann, A. Prediction of the effect of the geometric phase on product rotational state distributions and integral cross sections. Chem. Phys. Lett. 201, 178-186 (1993) and references therein. 12. Wagh, A. G. et al. Neutron polarimetric separation of geometric and dynamical phases. Phys. Lett. A 268, 209-216 (2000). 13. Sanders, B. C. et al. Geometric phase of three-level systems in interferometry. Phys. Rev. Lett. 86, 369-372 (2001). 14. Gong, L. F., Li, Q. & Chen, Y. L. Nonlinear behavior of geometric phases in transformations. Phys. Lett. A 251, 387-393 (1999). 15. Shen, J. Q., Zhu, H. Y. & Shi, S. L. Polarization of single-mode photon propagating inside the fiber and its geometric phase factor. Acta Phys. Sini. 51, 536-540 (2002). 16. Exner, P. & Geyler, V. A. Berry phase for a potential well transported in a homogeneous magnetic field. Phys. Lett. A 276, 16-18 (2000). 17. Yan. F. L., Yang, L. G. & Li, B. Z. Formal exact solution for the Heisenberg spin system in a time-dependent magnetic field and Aharonov-Anandan phase. Phys. Lett. A 251, 289-293 (1999). 18. Taguchi, Y. et al. Spin chirality, Berry phase, and Anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573-2576 (2001). 19. Falci, G. et al. Detection of geometric phases in superconducting nanocircuits. Nature 407, 355-358 (2000). 20. Shen, J. Q., Zhu, H. Y. & Shi, S. L. Gravitomagnetic field and time-dependent spin-rotation coupling. Phys. Scr. 65, 465-468 (2002). 21. Shen, J. Q., Zhu, H. Y. & Mao, H. An approach to exact solutions of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model. J. Phys. Soc. Jpn. 71, 1205-1209 (2002). 22. Shen, J. Q., Zhu, H. Y. & Chen, P. Exact solutions of time-dependent three-generator systems. quant-ph/0205170 . 23. Hooft G. ’t. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276-284 (1974). 24. Craigie, N. S. et al. Monopoles in Quantum Field theory: Proceedings of the Monopole meeting (World Scientific Publishing, Singapore, 1982). 25. Barriola, M. & Vilenkin, A. Gravitational field of a global monopole. Phys. Rev. Lett. 63, 341-343 (1989). 26. Chakraborty, S. Motion of test particles around monopoles. Gen. Rel. Grav. 28, 1115-1119 (1996). 27. Mashhoon, B. gravitational couplings of intrinsic spin. Class. Quant. Grav. 17, 2399-2410 (2000). 28. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1-23 (1989). 29. Datta, D. P. Can vacuum energy gravitate? Gen. Rel. Grav. 27, 341-346 (1995). 30. Krauss, L. M. & Turner, M. The cosmological constant is back. Gen. Rel. Grav. 27, 1137-1144 (1995). 31. Kakushadze, Z. Why the cosmological constant problem is hard. Phys. Lett. B 488, 402-409 (2000). 32. Mashhoon, B. On the spin-rotation-gravity coupling. Gen. Rel. Grav. 31, 681-691 (1999).
[楼主]  [8楼]  作者:逆子  发表时间: 2002/06/01 20:16 

我还是未能理解你的意思。
引力红移的物理学原理是什么?是万引对发光原子内部的作用致使其光谱红移呢,还是由于引力可以作用于传播中的光产生作用所致。这两种情况的物理原理是不同的。逆子想知道的是相对论是如何对此解释的,你又是如何看待此问题的。 很简单的推导可知,如果万有引力是作用于原子内部,致使原子光谱发生改变的话,那么,光只可能发生红移不可能发生紫移,因为,在这种情况下,光的传播还是遵循各向同性的。 如果引力红移是指引力对传播中的光产生作用的话,那么,这就会出现红移与紫移,因为,由引力对光的作用,使光的传播速度出现各向异性,有的方向传播的快,有的方向传播的慢,所以会形成红移与紫移的对称结果。 请不要问逆子是如何看待遇的,我只是想学习一下相对论,分析一下相对论是如何推导出红移的。按我的理解是,引力红移是等效原理的推导结果,不知沈先生如何看待。

※※※※※※
逆子
[楼主]  [9楼]  作者:逆子  发表时间: 2002/06/02 22:58 

是相对论的升级版本吗?
jqsphy先生,引力红移在相对论中只有一种可能出现,不是两者皆得的,如象你所说的也只能代表你的相对论观点了。不可能是原始版本,可以是2002年的升级版本了。 从原理上讲,引力红移是相对论从等效原理中推导而来的,所以对红移的解释不能与等效所推导的原理相违背。再着说了,引力为何能影响于原子能级的跃迁?我的意思不是不可能的事,而是相对论中根本就没有涉及到它。不妨再重新查询一下引力红移的解释,然后以此原理来推导一下落入太阳引力场中的光子的运行规迹,它是不应符合观测值的。

※※※※※※
逆子
 [10楼]  作者:jqsphy  发表时间: 2002/06/03 09:43 

回复: 不是我的升级版本,而是原始解释(你去看看数学推导就行了)。我觉得你不是很懂广义相对论,尤其是数学部分。自己歪曲理解
除非智力有限,我们一般是不会做歪曲理解的。在某些个别问题上当然正统物理学家理解也会出分歧,但这是正常现象,无损于理论本身。(就如100个物理学家有100种对量子力学的理解一样,是正常现象。他们尽管理解有不同,但用理论计算实际问题,结果都是一致的。) 但你的问题有点严重了。自己做了一知半解的理解,然后在私下做吃力的整理式思考,我认为在浪费时间。这样的人有许多。黄德民倒不属于这样的人,马国良也不是这样。 你的“力有速度”理论表明你的确善于思考和提出新思想新思路,但还是属于这种类型的事情。 JQSHEN

精彩推荐>>

  简捷回复 [点此进入编辑器回帖页]  文明上网 理性发言
 推荐到西陆名言:
签  名:
作  者:
密  码:
游客来访 
注册用户 提 交
西陆网(www.xilu.com )版权所有 点击拥有西陆免费论坛  联系西陆小精灵

0.17598104476929